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Abstract
The remarkable technological advancements that culminated in today’s powerful electron
microscope have enabled scientists to traverse into new regimes of the nanoworld. However, the
versatility of this complicated optical beamline allows for more than just inspecting atoms: by
shaping the electron beam, new and interesting phenomena are sought after by the interaction of
shaped beams with matter. Here, we review the recent newly-emerged field of electron beam
shaping by thin film interaction of nanostructures and by interaction with shaped electrostatic
fields. This article is dedicated to our friend Wolfgang P Schleich on the occasion of his 60th
Birthday. Since 2014, Wolfgang has collaborated with us within the framework of a Deutsch-
Israelische Projektkooperation project (supported by the Deutsche Forschungsgemeinschaft)
entitled ‘Science and applications of electron wave-functions shaped and manipulated by
engineered nano-holograms’, during which many of the concepts that we present here were
developed.

Keywords: electron microscopy, electron holography, computer generated holograms, thin film
membranes, beam shaping, caustics
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1. Motivation

As charged particles, electrons are often treated in the clas-
sical framework of applied electric and magnetic forces.
Experimental research in fields such as accelerator physics,
free-electron lasers, semiconductor fabrication, circuit
inspection, and electron microscopy, usually involves sole-
noids, quadrupoles, multipole correction elements, electro-
static and pulsed electric fields, radio-fRequency and
THz-modulated fields, and similar devices and technology.
The vast majority of these are used for the sole purpose of
shaping the electron beam in space and time to be as small or
short as possible.

In light optics, the shaping of light beams is already
considered a fundamental tool used frequently in research and

industry. The aim of this paper is to motivate and expose
researchers in these and similar disciplines to the recently
emerging field of electron beam shaping, a method that can
readily shape the electron’s wavefunction in a nearly-arbitrary
manner, which cannot be done with the standard devices
described above. We believe that shaped electron beams, as
their photon brethren, will become a major catalyst in future
theoretical and experimental research, and quite soon in
industry.

2. Introduction

In 1961, Jönsson performed a pioneering experiment,
demonstrating the interference of electrons that had passed
through two slits (Jönsson 1961, Jönsson 1974). Although
such an experiment had already been performed with light
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and the theory of wave interference had been established for
many years, this was the first demonstration of the two slit
experiment for a massive (and charged) particle, confirming
that massive particles can behave as waves. The wave nature
of the electron had already been demonstrated in 1927 by the
diffraction experiments of Davisson and Germer (1927) from
a Ni target. It was then followed by electron interference
experiments, such as Möllenstedt and Duker’s biprism inter-
ference (Möllenstedt and Düker 1956). However, Jönsson’s
experiment can be regarded as the first example of electron
wavefront structuring using a mask, paving the way for
extensive research on methods for manipulating the phase and
amplitude of the wavefunction of an electron. In his paper,
Jönsson described experimental challenges due to limitations
in fabrication, which remained an obstacle until very recently
(Frabboni et al 2012).

In 1947, Boersch discussed the idea of using the mean
inner potential of a film of constant thickness to influence and
induce a phase shift in an electron beam passing through it
relative to vacuum (Boersch 1947). As in light optics, the
wavefunction of an electron accumulates phase by passing
through a material. In the case of a non-magnetic material,
this contribution is proportional to the mean inner potential
(Reimer and Kohl 2008), which is, to first approximation, a
constant for each material. Without modern nano-machinery,
Willasch and Müller embarked on the ambitious feat of fab-
ricating profiled phase shifting plates using built-up con-
tamination (Willasch 1975, Muller 1976). The next examples
were made by electron beam hole drilling in AlF3 (Ito et al
1993, Bleloch et al 1998).

It took approximately ten more years of technological
advances before electron beam shaping evolved further. The
advances in nano-fabrication that enabled this progress
include the increasing availability of nano-machinery such as
focused ion beam (FIB) milling and electron beam litho-
graphy (EBL) (Jesse et al 2016). The steady improvement of
electron microscopes in terms of vacuum, stability, aberration
mitigation, and coherence, as well as research and applica-
tions already conducted in light optics, have also been major
catalysts. In light optics, extensive research has led to the
commercialization of technologies such as lithography, dia-
mond turning, and magnetorheological finishing, which allow
for the arbitrary phase manipulation of light, whose wave-
length ranges from hundreds of nanometers to a few microns.
However, the wavelength of light also determines the order of
magnitude of the smallest feature that one can create with the
wave. The shaping of electron beams is therefore interesting
because of their wavelength: 2 pm for a standard 300 keV
electron microscope, which is five orders of magnitude
smaller than that available in (visible) light optics, resulting in
the potential to probe atomic systems, and in principle the
sub-atomic regime.

As they are charged particles, electrons can be manipu-
lated using electric and magnetic forces through the Lorentz
equation. The round magnetic or electrostatic electron lenses
as well as the non-rotationally symmetric multipole aberration
correctors on modern transmission electron microscopes
(TEMs) are all based on this principle. However, as a result of

their wave characteristics, free-space paraxial electron beams,
such as those in a TEM, are also governed by a wave equation
that is identical in form to the paraxial Helmholtz equation
used in light optics. By way of this analogy, many of the
applications and knowledge that have been established for
light can also be applied to electron optics. In this review, we
primarily discuss electron beam shaping using Fourier holo-
grams, which exploit the fact that, just as for light, the far-
field of an electron wavefunction is its Fourier transform.
Hence, the theory of Fourier optics can be applied. In part-
icular, placing a mask in the path of a collimated electron
beam will influence its wavefunction, such that, in the focal
plane, it will be imprinted in some proportion with the Fourier
transform of the mask.

Both the amplitude and the phase of an electron wave-
function can be manipulated using a thin hologram, in order
to shape the beam to a desired form. An amplitude mask can
contain one or more layers, in which one of the layers exhibits
strong scattering and areas of it are removed, in order to allow
transmission of the beam through these areas to form a spe-
cific shape. The phase of the wavefunction can be shaped by
varying the thickness of either a thick and light material or a
thin and heavy material. The primary disadvantage of using
material masks for this purpose is unavoidable scattering, as
discussed below.

A recent research topic that has sparked interest in the
field of electron beam shaping involves the generation of
beams that carry orbital angular momentum (OAM), such as
vortex beams (Allen et al 1992). In 2010, Uchida and
Tonomura focused an electron beam at the confluence of a
naturally formed stack of graphite thin films, thereby
imparting a spiral phase and creating a vortex electron beam
(Uchida and Tonomura 2010). Subsequently, Verbeeck et al
(2010) used fork-shaped amplitude masks to produce vortex
beams, with the goal of using them as probes to detect
magnetic circular dichroism, while McMorran et al (2011)
demonstrated high quanta OAM beams of up to 100ħ. These
studies were the precursors to a considerable amount of
research on electron vortex beams, including the formation of
vortex beams with the size of atoms (Verbeeck et al 2011);
beams with even larger angular momentum and spiral masks
(Saitoh et al 2012, Verbeeck et al 2012, Grillo et al 2015,
Mafakheri et al 2017); exploring their physical behavior in
the presence of magnetic fields (Bliokh et al 2012, Guzzinati
et al 2013); the development of angular momentum mea-
surement methods (Schattschneider et al 2012, Saitoh et al
2013, Shiloh et al 2015, Grillo et al 2017, McMorran et al
2017); demonstrating that an electron beam can be in a
superposition of two orbital angular momenta (Hasegawa
et al 2013); and demonstrating interference between two parts
of an electron wavefunction, each containing angular
momentum (Hasegawa et al 2013). Grillo et al (2014) gen-
erated vortex beams using a blazed grating (Harvey et al
2014), which potentially allows for increased efficiency in the
first diffraction order, while Shiloh et al (2014) used a
smooth, continuous phase mask, in which the wavefront
remains on-axis and intensity is not lost to higher orders.
Vortex beams have also been created using structured
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electromagnetic fields, for example by exploiting magnetic
lens aberrations (Clark et al 2013, Petersen et al 2013), mode
conversion from a Hermite–Gaussian beam (Schattschneider
et al 2012) or a spin-polarized beam (Karimi et al 2012), and
using a magnetic needle (Béché et al 2014, Blackburn and
Loudon 2014) or electrostatic line charges (Pozzi et al 2017).

Another interesting family of electron beams are those
that preserve their spatial shape during propagation (also
called shape-preserving, or ‘non-diffracting’ beams). For
example, Voloch-Bloch et al (2013) used amplitude masks to
create the first electron Airy beams, whose shape is preserved
along a curved trajectory. Grillo et al (2014) generated the
first electron Bessel beam using a kinoform phase mask,
while Saitoh et al (2016) and Nambu et al (2017) used ring-
shaped and polygon-shaped annular slits to create nearly non-
diffractive beams, and a recent paper reports an efficient
electron axicon lens using a magnetic vortex for generating
electron Bessel beams (Zheng et al 2017).

Whereas these works used beam shaping to form ana-
lytically-described wavefunctions, Shiloh et al (2014) showed
that, by using phase retrieval algorithms and computer-gen-
erated phase holograms, nearly-arbitrary spatial shaping of an
electron wavefunction is possible. The most significant
advantage of using phase masks over amplitude masks resides
in their transmission efficiency. Amplitude masks diffract the
beam into many diffraction orders, of which only one of
the orders is often of interest. In contrast, phase masks have
the potential to manipulate the complete wavefunction,
without losing intensity to higher orders. This property also
removes the need to filter out unwanted diffraction orders.
Harvey et al (2014) investigated the fabrication of phase
masks for electrons, showing that the intensity of diffraction
orders can be manipulated by controlling the thickness profile
of the periods of a mask. As we show in section 3 below, on-
axis phase masks can be used successfully to control and
correct aberrations in electron microscopy (Shiloh et al
2016, 2018). However, unlike a light beam, an electron beam
suffers both elastic and inelastic scattering events, which can
result in a loss of signal and elevated background levels.
Nevertheless, by using a modern high-brightness and coher-
ent electron gun, these effects can often be filtered out or
otherwise ignored, depending on the application goal (Shiloh
et al 2018). Although similar works have been attempted
using the off-axis scheme, unfortunately it has proved to be
experimentally difficult in terms of fabrication, measurement
procedure, and signal to noise ratio, and ultimately a viable
resolution enhancement was not demonstrated (Grillo et al
2017, Linck et al 2017).

Other works in the field of electron beam shaping
include the demonstration of the electron Talbot effect
(McMorran and Cronin 2009); the modulation towards lin-
ear phase contrast in STEM by using a phase mask shaped as
a zone plate (Ophus et al 2016); the demonstration of an
electron hotspot smaller than the diffraction limit by using a
super-oscillating electron beam (Remez et al 2017); the
control and manipulation of three-dimensional (3D) shaping
of electron beams (Shiloh and Arie 2017); the selective
detection of a specific plasmon mode by using a two-lobed

beam reproducing its symmetry (Guzzinati et al 2017); the
measurement of a nanoscale out-of-plane magnetic field by
interfering a highly twisted electron beam with a reference
wave (Grillo et al 2017); and the recent successful demon-
stration of the first dynamic electron modulator (the
equivalent of a spatial light modulator) of 2×2 pixels,
which opens the door to in situ dynamical electron beam
shaping (Verbeeck et al 2018).

A different type of electron phase plate, rather than a phase
mask, is a thin film placed in the Fourier plane of the electron
lens. Such phase plates are intended to improve contrast in
electron microscopy and do not fall within the scope of this
paper. Comprehensive reviews of this topic have been published
by Nagayama (2011) and Glaeser (2013).

In the following sections, we elaborate on research
conducted by the authors, some of which has been men-
tioned above. We begin with theoretical background
(section 2), and then review the subject of electron beam
shaping using both patterned thin films (section 3) and
structured electrostatic fields (section 4). We conclude with a
summary and outlook.

3. Theoretical background

In this section, the basic equations that describe the key
approximations that are used in the description of electron-
specimen interactions are summarized briefly and applied to
the case of homogeneous specimens at low resolution, as well
as to simple and less simple configurations of electric and
magnetic fields.

3.1. The phase object approximation (POA)

The POA has been widely used for investigating interactions
between electrons and electromagnetic fields (Pozzi et al
2014). A detailed derivation can be found elsewhere
(Pozzi 2016). According to the POA, any electromagnetic
field between planes zi and zi+1 along the optical axis z can be
treated as a thin phase object. The corresponding transmission
function T can be formulated as
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where V x y z, ,( ) is the electrostatic potential, A x y z, ,z ( ) is
the z component of the magnetic vector potential A (which is
linked to the magnetic induction B by the relation
B=∇×A), and e, λ, ħ and E are the absolute values of the
electron charge, the de Broglie electron wavelength, the
reduced Planck constant and the kinetic energy of electrons in
the non-relativistic approximation, respectively. The integra-
tions are performed along the trajectory of the incident elec-
tron beam, which is parallel to the optical axis z. For such
weak fields, the multislice method does not usually need to be
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applied, and the integration limits can be extended to-¥ and
,+¥ while the z coordinate in the transmission function can

be chosen to be coincident with the object plane. Relativistic
correction can be included if appropriate values of λ and E are
used. As the effect of the tilt of the incident plane wave is
normally negligible at high incident electron energies, the
transmission function in equation (1) holds for generic illu-
mination. The variation in electron amplitude in a very thick
specimen, including the effect of high angle scattering and
subsequent cut-off by an aperture, can be accounted for by
introducing a real multiplicative amplitude term x yAmp ,( ) in
the transmission function of the object in the form

T x y x y, Amp , e . 2x yi ,= f( ) ( ) ( )( )

3.2. Homogenous samples

The concept of mean inner potential Ui, which describes the
interaction of an electron beam with a material at a resolution
at which single atoms or atomic columns are not resolved, has
been discussed by Spence and co-workers (Spence 1993,
O’Keeffe and Spence 1994, Saldin and Spence 1994), and
measured using interferometric and holographic methods (e.g.
Missiroli et al 1981). According to these results, in the
absence of dynamical diffraction the phase shift is simply
proportional to the product of the mean inner potential Ui and
the specimen thickness t.

3.3. Magnetic dipoles

Let us consider a small current loop located at the origin, with
surface S,D

G
current I and a magnetic dipole moment given by

the expression
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G ( ) Note that the component mz of the magnetic
dipole aligned with the direction of the electron beam has no
effect, within the POA.

This expression can be extended to describe a flux tube
consisting of a one-dimensional series of aligned magnetic
dipoles. If nl is a constant number of elementary loops per
unit length and these magnetic dipoles are aligned parallel
to the y axis from –a to a, then the corresponding phase
shift is
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This expression can be integrated in an elementary
way, resulting in the equation
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By using the relation m I S,y = D and recalling that the
magnetic field inside the flux tube is constant and equal to
that of an ideal solenoid B n Il0m= and that B S ,D = F we
obtain the following expression for the phase shift:
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In the limit of a very long flux tube (a l ¥),
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i.e. the phase difference is constant and equal to that cal-
culated by Ehrenberg and Siday (1949) and Aharonov and
Bohm (1959).

The infinite magnetic flux tube discussed above is a
limiting case that cannot be realized in practice. The closest
approximation is a uniformly magnetized bar. A monopole
field at the end of a magnetic bar was employed as a test
specimen to show the pitfalls of the uncritical use of holo-
graphic reconstruction programs, which can result (in the case
of undersampling) in the presence of apparent magnetic
monopoles in reconstructed phase images (Pozzi 2002), long
before its use to produce electron vortex beams (Béché et al
2014, Blackburn and Loudon 2014).

3.4. Electrostatic dipoles

In the electrostatic case, the scalar potential associated with an
elementary dipole of moment p q l p p p, ,x y zd= =

G G
( ) is given

by the expression
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Also in this case, due to the POA, the z component of the
electric dipole does not contribute to the phase shift. If the
dipole is aligned along the x axis, then the same functional
dependence is recovered, as for a magnetic dipole aligned
along y.

By the same token, the phase shift resulting from a one-
dimensional series of aligned electrostatic dipoles is given by
the expression
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where nel describes a constant density of electrostatic dipoles,
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which are aligned along the x axis and uniformly distributed
along the y axis from −a to a. In the limit a→∞,
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Here, in contrast to the magnetic case, the phase shift can
be varied continuously, depending on the orientation of the
dipoles and the corresponding component of the dipole
moment px. The close analogy between the electrostatic and
magnetic cases shows that the phase shift of a line of elec-
trostatic dipoles is equivalent to that of a magnetic flux tube.
Therefore, the phase around the extremity of an electric dipole
line can be considered as the electrostatic analog of the phase
from a magnetic monopole field at the end of a flux tube.

If a similar integration is performed, instead, along the x
axis, taking into account that in this case p q xd ,x = then the
phase shift is given by the expression
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and is equivalent to the phase shift associated with a positive
charge at (a, 0) and a negative charge at (−a, 0).

3.5. Electrostatic line charges

The former calculations can be carried out using tables of
integrals (e.g. Gradshteyn and Ryzhik 2014). However, it is
also worthwhile to use computer algebra software, such as
Mathematica (Wolfram 1999), to investigate more elaborate
charge distributions. In particular, equation (14), together
with the equation describing the electrostatic potential created
by two opposite point charges, can be used as a starting point
to describe the potential and phase shift associated with a
uniformly charged line of constant charge density K (Tavabi
et al 2015, Pozzi et al 2017). If the line extends in the z=0
plane from (0, −a) to (0, 0) and is compensated by a neu-
tralizing charge in the same plane at (xD, yD), then the
potential distribution takes the form
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and the corresponding expression for the phase is
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Any combination of line charges of constant charge
density can be described by rotating and displacing the above
expressions relative to a single line charge.

In particular, the case of a line charge in front of a
conducting plane is equivalent, by the method of images, to
two opposite line charges at double the distance (Matteucci
et al 1992). When the two lines are parallel, the electrostatic
analog of a magnetic bar is obtained, owing to the formal
identity between the electrostatic and magnetic cases (Pozzi
et al 2017). These analogies are summarized in figure 1.

4. Beam shaping using patterned thin films

In this section, we review several examples of work carried
out by the present authors on the nanostructuring of thin films
for use as optical elements for electron beams. We broadly
categorize these elements in terms of the manipulation of the
amplitude or phase of the electron beam, although a mixture
of both effects is rarely avoidable. First, we discuss the use of
amplitude holograms to generate vortex and Airy beams in an
off-axis scheme and the generation of on-axis astigmatic Airy
beams in order to characterize their acceleration coefficient.
We then extend the holograms to yield 3D patterns. In the
second part, we discuss the use of a variety of on-axis phase
holograms, including those used for creating vortex and
Hermite–Gauss beams, as well as nearly-arbitrary holograms
generated using phase retrieval algorithms. An application to
spherical aberration correction is then presented. The holo-
grams are implemented in binary, continuous, pixelated-
matrix, and fractured designs.

4.1. Amplitude holograms

With regard to amplitude modulation, it is important to dis-
tinguish between amplitude modulation in light optics and
electron optics. In general, while a few to a few tens of nm of
metal would be sufficient to completely absorb light, it would
require tens of μm of a high Z material to completely stop and

Figure 1. Schematic diagram showing the analogy between magnetic
fields ((a), magnetic dipole; (c), magnetic flux tube; (e), magnetic
bar) and electrostatic fields ((b), electrostatic dipole; (d), electrostatic
line charges; (f), two parallel charged rods). The electromagnetic
fields that are produced by the magnetic elements (left column) and
their electrostatic counterparts (right column) in each row are
equivalent.
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absorb electrons that have been accelerated by 200–300 kV,
which is the standard accelerating voltage used in modern
electron microscopes. Therefore, the primary electron beam
amplitude modulation mechanism that is relevant in the pre-
sent work is the scattering of electrons to high angles, rather
than absorption. A second important difference is that,
through (inelastic) scattering, the energy (and therefore also
the wavelength) of the electron changes, leading to deco-
herence of the beam. In contrast, light can only change its
wavelength through nonlinear optical processes. The use of
thin films as either phase or amplitude masks therefore results
in a noisy background of inelastically scattered electrons.
However, the scattering angles are, for most of the applica-
tions presented here, large enough that the spatially modu-
lated area of the beam is practically unaffected.

4.1.1. Vortex beams. One of the most prolific applications of
amplitude holograms in electron microscopy in recent years
has involved research into vortex beams (Bliokh et al 2017).
Much literature already exists on different kinds of vortices
and associated holographic masks, and this is not the focus of
the present review. However, here we present the interested
reader with an elegant formulation for a fork grating, which
yields vortex beams that are transversely arranged and
correlated with the diffraction order of a modulated Bragg
grating. A binary phase modulation can be expressed in the
form

h x y
x

l a y x, sign sin
2

tan 2 ,
2

.
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In order to achieve a binary amplitude modulation (with
values of 0 or 1), one could use h h1 2.¢ = +( ) In this
formulation, which can be regarded as a binary computer-
generated hologram, 2πx/Λ is a linear grating along x with
period Λ, on which the four-quadrant inverse-tangent
function5 modulates the spiral phase of the vortex, l being
the topological charge. δ reduces fabrication errors in the
center by preserving continuity: its value is chosen to be equal
to zero (one) if l is odd (even). Δ is ideally set to zero, in
which case only the odd diffraction orders emerge. If desired,
it can be set to, e.g. Dcos ,pD = ( ) where the duty cycle D
can be chosen so that both even and odd diffraction orders are
visible.

In effect,Δ is a constant bias function that is added to the
binarization scheme of the hologram, which in principle could
also add a noisy background to the image. Figure 2 shows
examples of amplitude masks generated using this expression.

4.1.2. Airy beams. Berry (1979) showed that there exists a
peculiar and unique wave packet in quantum mechanics,
which is termed the Airy beam and can be described either
temporally or spatially. It propagates on a parabolic trajectory

and is thus said to accelerate without an applied force.
Although it is not square integrable and thus requires infinite
energy to be produced, a truncated version has been
implemented in light optics (Siviloglou et al 2007).
Subsequent investigation has revealed that the centroid of
the truncated beam propagates in a straight line—as expected
—and thus Newton’s laws still apply. Fortunately, the
peculiar characteristics of this caustic phenomenon can still
be observed before the beam disintegrates.

An Airy beam is characterized by an amplitude
dependence that takes the form of the Airy function,

x xAi ,0( ) where x0 defines the transverse scale. Its parabolic
trajectory coefficient, which is sometimes referred to as an
‘acceleration’ coefficient, is k x1 2 ,DB

2
0
3t = ( )/ where kDB is

the (de Broglie) wave number. τ can also be termed a ‘nodal
trajectory coefficient’. The Airy function is then written

x z xAi 2 ,2
0t-[( ) ] in accordance with Newtonian

mechanics. This relation implies that the infinite energy wave
packet accelerates in free space with no external forces. An
explanation based on geometrical optics treats the Airy beam
as a caustic, so that every step forward in the propagation
direction is manifested by the constructive interference of
different rays from the forming aperture (or holographic
mask), intersecting on a parabolic trajectory. This description
also explains the beam’s special self-healing characteristic.

Voloch-Bloch et al (2013) generated electron Airy beams
for the first time using amplitude masks. The modulation was
effected by milling a hologram pattern onto a 50 nm SiN
membrane coated with 10 nm of Au. Several examples, some
of which are elaborated on in the supplementary material in
the 2013 paper, included on-axis and off-axis holograms of
Airy beams similar to those shown in figure 3, as well as

Figure 2. Binary amplitude masks of different orders for off-axis
vortex beams. In the first diffraction order, these holograms impart
an OAM of (a) one, (b) three, (c) five, and (d) ten.

5 y xa tan 2 ,( ) returns the angle in the interval , ,p p-[ ] as opposed to atan,
which is limited to 2, 2 ,p p-[ ] i.e. only the two quadrants in the positive x
half-space.
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examples of vortex beams. The Airy beam’s parabolic
trajectory was explicitly measured by recording a focal series
and compared to simulations. Additional comparisons were
made by plotting the deflection of each diffraction order
associated with different accelerations. Although this direct
method of measurement is indisputable, since the Airy beam
is already determined at the mask, a different method can be
used to deduce the acceleration coefficient. We elaborate on
this approach by introducing the astigmatic transformation in
the following section.

4.1.3. The astigmatic transformation. The Laguerre–Gauss
family of solutions, or modes, of the paraxial Helmholtz
equation, are a prime example of vortex beams, although
vortex beams are not usually pure Laguerre–Gauss modes.
Another set of solutions of the same equation is the Hermite–
Gauss family, this time in Cartesian coordinates. As they are
solutions of the wave equation, these beams (and any well-
approximated ones) will ideally propagate without changing
their shape, other than the magnification. It is therefore said
that they are invariant under propagation, and hence also
under Fourier transformation. A mathematical relation, which
was extensively studied by Abramochkin and Volostnikov
(1991) shortly before the conceptual breakthrough work of
Allen et al (1992) on the OAM of light, exists between the
two families. Concisely, the transformation between Hermite
and Laguerre–Gauss modes is achieved by using an
astigmatic transformation—effectively a cylindrical lens and
a Fourier transform. An additional astigmatic phase must be
removed at the diffraction plane to complete the
transformation. The intensity pattern of the transformed
beam suggests an interesting application. Assuming that a
sample yields a pure vortex state (with a single integer value
of OAM), one would not know without calibration and further
processing the quantity of the OAM, since only a ring pattern
would appear in the microscope. As the diameter of the ring is
related to the OAM, the magnification of the microscope must
be taken into account, among other parameters. Conversely,
(one-dimensional) Hermite–Gauss modes appear as stripes,
whose number is related to the mode order; by exploiting a
one-to-one transformation between the two families using a
cylindrical lens—i.e. by changing the stigmators’ excitation
in the electron microscope—a ring would transform into a set
of stripes, and the OAM would be revealed immediately. We
demonstrated this approach experimentally (Shiloh et al
2015), as a prelude to the interesting application of the
measurement to the acceleration of an Airy beam.

4.1.4. The astigmatic airy beam. By using the astigmatic
transformation, we have shown how one can deduce the
acceleration coefficient of a two-dimensional (2D) Airy beam
in one measurement. A comparison of a measured stigmatic
and astigmatic Airy beam is shown in figure 3. Following a
geometric optics derivation, denoting the normalized angular
coordinate system ,X Yq q in the diffraction plane, we define

u2 sinh ,Y
2q = u>0, and write the curves defining the

astigmatic 2D Airy function in the form

u
u

u
u

3 cosh sinh
2

,

3 cosh cosh
2

20

X

X

1
3 2

2
3 2

q

q

= - +

= - +

( )
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(Shiloh et al 2015). In order to relate this normalized result to
the astigmatism a and the transverse scale x0, one must recall
the coordinate normalization and write the geometric angle

a x .x y X Y,
2

0
3

,q q= It is interesting to note that this method,
which was first developed for electron beams, was later
implemented using optical light beams (Singh et al 2015).

4.1.5. Extension to 3D shaped beams. Typically, computer-
generated holography is used to shape one optical plane (the
‘image’ or ‘reconstruction’ plane), which is usually the focal
plane of the focusing lens. In such cases, it would ideally
coincide with the diffraction plane. If, however, an additional
quadratic phase is encoded in the hologram, or a non-
collimated beam is used as input, then an additional focusing
or defocusing virtual lens would be introduced, effectively
shifting the reconstruction plane away from the focal plane of
the lens. This feature can be used to create reconstructions in
more than one plane, or in many planes, thereby enabling a
3D shaped beam to propagate away from the hologram. One
could argue that the cumulative effect, comprising a measured
intensity pattern in 3D, is not a ‘beam’ per se, but rather a
caustic defined by its highest intensity pattern. However, this
discussion is beyond the scope of the present review.

In the case of off-axis holograms, as studied here, the
reconstruction is in the first diffraction order. In order to avoid
overlap with the unscattered zero order, we calculate the axial
length Δ from the focal plane, where the first and zero orders
overlap. If f is the focal length of the focusing lens positioned
in the plane of the mask, and assuming plane wave (or
collimated) illumination of the mask, Δ can be expressed in
several useful ways:

f f
D f

D
1 2 1 2 1 2

, 21
b q b b q

D =
+

=
+

=
+( )

( )

where D f2b = is the numerical aperture of the lens, D is
the diameter of the mask, q l= L is the angle of the first

Figure 3. Binary amplitude masks. (a) Off-axis Airy mask. Inset: one
diffraction order showing an Airy beam. (b) On-axis Airy mask.
Inset: diffraction plane measurements showing a stigmatic (left) and
an astigmatic (right) zero-order (both image and conjugate), Airy
beams.
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diffraction order generated by a grating of period Λ, and λ is
the wavelength of the coherent illumination.

Concepts for calculating computer-generated holograms
(i.e. the amplitude and phase of the mask) that would generate
a desired 3D pattern were already studied by Brown and
Lohmann (1969), and a vast amount of literature has been
written since then. Lohmann suggested summing the
contributions of point sources in different planes along the z
axis by back propagation calculation, e.g. using a Fresnel
propagator, which is probably the most fundamental
approach. A related formalism is based on the inverted Gabor
holographic technique (Latychevskaia and Fink 2016). While
propagating the beam, point scatterers are added. The
simulated wave is then inverted, resulting in a phase front
of spherical waves in superposition. This is the phase that is
required at the selected, simulated axial position to yield a 3D
set of focal points in different axial planes along the
propagation direction. An example of a pixelated computer-
generated hologram is shown in figure 4.

4.2. Phase holograms

In light optics, phase-only holograms are advantageous over
amplitude holograms due to their transmission efficiency. Aside
from Fresnel reflection losses, which can be circumvented by
using appropriate anti-reflective coatings, a glass slab is, to all
intents and purposes, transparent to visible light, acting only to
alter the phase of the impinging wavefront relative to that of a
reference wavefront. A simple hologram would be a thin lens,
which adds a transverse quadratic phase. A phase grating can be
designed to steer light to a desired direction, split it, or perform
other manipulations. In general, one can define two kinds of
phase optics that are relevant for holograms: refractive optics,
and diffractive optics. Diffractive-optical elements are optically
thin, can be fabricated as binary elements, can provide oppor-
tunities for efficient chromatic aberration correction, and their
design principles are useful in many fields of optics (Malacara-
Hernández and Malacara-Hernández 2013). The primary

disadvantage of a refractive scheme is the extended thickness
and limited flexibility of the glass material that is required in
such elements. A ‘fractured’ element attempts to take advantage
of both worlds: it is a refractive element ‘modulo 2π’, making it
thin, while retaining the refractive profile between adjacent
phase jumps. We will show that, in electron optics, the refrac-
tive design can prove to be an easier route, at least fabrica-
tion-wise.

When designing a diffractive-optical element, whether it
is binary, fractured or continuous, an important design
question is related to the dynamic range of the element’s
phase contribution. The phase shift of a beam that passes
through glass is proportional to the properties of the glass and
—importantly—its thickness. For example, if a binary phase
grating is designed and the height of the grating ridges is set
so that they induce a π phase shift, then the resulting first
positive and negative diffraction orders would be of highest
intensity, while the zero order would have no intensity. This
situation cannot be achieved using a binary amplitude grating,
unless limitations are placed on the reference beam. In elec-
tron optics, since each added layer of material increases the
probability of scattering, the material, design, and fabrication
scheme must be chosen carefully.

4.2.1. Inducing a phase shift. Designing a diffractive-optical
element from a silicon nitride membrane for electron beams
produces an element that has similar properties to those for
light. Taking account of relativistic correction, the phase shift
induced by sending an electron beam through a non-magnetic
membrane material, relative to vacuum, is given by the
expression

t n t
eU
E

E E
E E

t C U t
2

1
2

2
, 22i

E i
0

0
j

p
l

p
l

D = - =
+
+

=( ) ( ) ( )

where t is the membrane thickness, λ is the electron
wavelength, n is the refractive index for electrons (which is
seldom used in the literature), and E m c0 0

2= and E eU=
are the electron’s rest and kinetic energies, respectively. Ui is
the mean inner potential of the material. For a 200 keV
electron beam, the thickness that is required to generate a π
phase shift in silicon nitride is approximately 42 nm. Since
electron scattering by silicon nitride is relatively low, we
consider it to be a nearly pure phase plate for our purpose.
Modulation of the thickness of the membrane can then be
used to create holograms for electrons, by imparting
predesigned phase shifts to the illuminating electron
wavefront.

4.2.2. Phase gratings and FIB Ga+implantation. The ability
to machine membranes to different thicknesses results in good
control over a continuous range of phase shifts. The
requirement to mill to a specific depth is crucial, as any
deviation can result in excess intensity in the zero order beam.
This excess intensity depends, among other things, on the
kind of deviation and its periodicity. In general, since the
deviations are mostly random, errors manifest themselves in
the zero order beam. To this end, it is worth looking at the
relationship between depth and phase shift for binary phase

Figure 4. Amplitude mask for 3D beam shaping and corresponding
diffraction pattern. (a) Gold dot matrix on a SiN membrane, with a
period of δ=120 nm. Insets show the full 90 μm mask and a high
magnification image of the gold nano-islands. (b) Diffraction pattern
showing the Archimedean spiral, relating the diffraction orders to the
mask’s periodicity. The inset shows multiple diffraction orders in
low angle diffraction. The contrast and brightness have been altered
for visibility. Reprinted from Shiloh and Arie (2017) Ultramicro-
scopy 177 30–35, with permission from Elsevier.
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gratings. We write the Fourier series for a square wave
(between −1 and 1) in the form
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where Λ is the period of the grating and D is its duty cycle. As
we have separated the zero order coefficient from the sum, it
is immediately evident that any deviation from D=0.5, i.e.
50% duty cycle, results in intensity in the zero order beam. If
a 50% duty cycle is chosen, then 2 2 81%2p =· ( ) of the
intensity is equally halved between the first positive and
negative orders, and the rest is scattered to higher orders.
This, however, assumes that the phase grating is binary and
that its thickness imparts a phase shift of exactly π. Assuming
a thickness-dependent phase shift t ,f ( ) the transfer function
of a thin binary phase grating can in general be expressed in
the form p t g gexp j 1 2 1 1 2.f= ´ + + ´ -( ( )) ( ) ( )
By using this formulation, the intensity variation of the
different orders as a function of thickness can be expressed in
the form
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When fabricating a fine grating using FIB milling, as a
result of the physical process and the diameter of the beam the
deeper the groove the wider it becomes. If the resolution of
the FIB is not a limiting factor, then, in order to compensate,
the grooves should be thinner in design depending on their
depth. Once this effect had been calibrated, we fabricated 53
such gratings, each with a 400 nm period, on a 100 nm thick
silicon nitride membrane. Each grating in sequence was
milled using a linearly-increasing beam dwell time, which is
approximately proportional to milling depth. The duty cycle
was set to 50%, so that the intensities in the different orders
were reduced to the familiar forms I tcos 20

2 f= ( ( ) ) and
I t2 sin 2 .1

2 2p f=o ( ) ( ( ) ) The diffraction pattern of each
grating was then recorded. By analyzing the intensities of the
diffraction orders, we expected to verify the theoretical
relationships, and the phase shift dependence.

The FIB milling process implants Ga ions into the
membrane. By itself, ion implantation is not a problem for
inducing predetermined beam phase shifts; at most, the
additional inner potential could be compensated for by a
simple adjustment of the design parameters. In the present
case, varying amounts of ion implantation in different
gratings, which are not linear in dwell time, are possible. In
order to characterize the amount of implantation and its effect
on the phase shift, a 5 nm layer of Ti was evaporated onto the
unmilled side of a membrane for control purposes. We then
used energy dispersive x-ray spectroscopy (EDS) to measure

the chemical composition of each grating, paying particular
attention to the amounts of Ga and Ti.

Measurements of the Ga/Ti fraction are presented in
figure 5(a). By assuming, as is often the case, that the
distribution of Ga in the sample is Gaussian, we fitted the
results to the function bmGa Ti a 1 exp ,2= - -( ( ))/ where
m 1.53= is the grating number, and a and b are fitting
parameters. We can repeat the analysis using the same fit
parameter b from a different perspective: we fit the
sinusoidal-like measured curves (see in figure 5(b)) using
equation (24), with D=50% and where the phase shift has
the same form as the Gaussian distribution, with 0f a
constant phase shift:

x bm1 exp . 250 1
2f f f= + - -( ) ( ( )) ( )

As evident from the figure, the results fit remarkably well
using the same fit parameter b.

Figure 5. (a) EDS measurement results for each grating. In the
shallowest gratings, there is very little Ga implantation, which rises
approximately linearly for the first 13 gratings, and then saturates.
These data points are fitted using the Gaussian model

bmGa Ti a 1 exp .2= - -( ( )) (b) Normalized intensities of the
different orders measured from the grating series. The excellent fit to
the measurements results in part from the use of a Gaussian model
for Ga implantation. Insets show example measurements of the
central defocused diffraction orders (−1, 0, 1) from different
gratings, as marked by the arrows. The last few gratings became
geometrically deformed during the fabrication process and were
removed from the analysis.
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It is important to note that, although silicon nitride
membranes have low electron scattering properties, some
amplitude modulation still exists. In order to avoid this effect
in the analysis, we normalized the intensities for each data
point by the sum of energy in all three (−1, 0, and 1)
diffraction orders for the measured grating, although this
effect can be accounted for by reformulating the equations
(Harvey et al 2014).

4.2.3. On-axis computer-generated holograms. One of the
advantages of using phase masks is that it is conceptually
possible to impart full transmission efficiency to the zero
order (on-axis) beam. In this way, the shaped beam has
maximal intensity and there are no losses to higher diffraction
orders. On-axis beam shaping is also possible using binary
amplitude masks (Piestun et al 1997), albeit with greatly
diminished efficiency, or increased background noise if the
shaped pattern is designed axially out of the focal plane.

Two simple examples of on-axis binary and multi-
levelled, continuous masks are shown in figure 6. In
figure 6(a), we milled two opposite quadrants to a depth
equivalent to a π phase shift, so that a Gaussian beam
impinging on the mask would result in a Hermite–Gaussian
mode of order 1, 1, which is a solution of the wave equation.
In figure 6(b), we produced a helical structure with one step of
height equivalent to a 2π phase shift. This mask, when
illuminated with a Gaussian beam, yields a Laguerre–Gauss
mode of order 0, 1, which is also a vortex beam. In practice,
the masks are illuminated with a circular top-hat beam, such
that the emerging beams are not exact solutions, but are
qualitatively similar to very high accuracy.

A nearly-arbitrary on-axis modulated beam can be
designed using phase retrieval algorithms. One should not
conclude that a unique solution for the phase must be found.
In some cases, this is either impossible to achieve or such a
solution does not exist. However, approximate solutions may
prove to be sufficient to satisfy the goals of an experiment or
application.

Calculation of the required phase in a plane that yields a
desired intensity pattern in another plane, usually the

diffraction plane, is a vast field of research, with roots in
the work of Gerchberg and Saxton (Gerchberg 1972). The
associated mathematical problem is non-convex, and during
iterations the algorithm can ‘fall’ into local minima, from
which it cannot recover. It was later shown that this algorithm
is an example of the ‘gradient-descent method’ or the ‘method
of steepest descent’, and much work has been contributed to
the subject by Fienup et al (1978, 1982, 2013). Many other
approaches to phase retrieval exist, including genetic
algorithms, direct search algorithms, annealing, ptychogra-
phy, and alternating projections.

We used such an algorithm to calculate and design the
phase masks shown in figure 7. FIB milling was used to mill
dips into a membrane, each with a depth corresponding to the
calculated phase at that position. The resulting diffraction
patterns exhibited some zero order intensity—mostly due to
errors in fabrication—but our designed pattern still emerged.

4.2.4. Phase masks for optical aberration correction and
manipulation. The footprint of electromagnetic optical
elements comprising an electron microscope is rather large,
in comparison to thin film membranes, which can be used to
shape the phase-front of an electron beam. Here, we describe
different refractive-diffractive elements that are intended to
induce known aberrations to the probe of a scanning TEM.
We fabricated the elements, which are shown in figure 8, to
investigate the prospects of aberration correction using thin
films. These are: (a), (b) half-beam tilt, (c), (d) two-fold
astigmatism, (e), (f) three-fold astigmatism, and (g), (h)

Figure 6. On-axis holograms: (a) Binary phase mask for a Hermite–
Gauss mode of 1, 1-like order. (b) Vortex continuous phase mask.
Insets: measured beams in the diffraction plane. Reprinted from
Shiloh et al (2014) Ultramicroscopy 144 26–31, Copyright (2014),
with permission from Elsevier.

Figure 7. On-axis holograms: (a) ‘TAU’ hologram produced by the
mask in (b); Inset: magnification showing ∼60 nm holes comprising
the pixels. (c) Hologram of electrons orbiting a nucleus produced by
the mask in (d); Inset: magnification showing the center of the mask.
The contrast and brightness levels in (c) were altered for visibility.
Reprinted from Shiloh et al (2014) Ultramicroscopy 144 26–31,
Copyright (2014), with permission from Elsevier.
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primary spherical aberration. The half-beam tilt structure was
used primarily for assessment of the fabrication process.
Circular illumination of the mask should result in half of the
transmitted intensity propagating on-axis, while half should
be tilted according to the blazed grating’s period. Any
deviations from a perfectly blazed grating, or other effects
that may arise, such as from local charging of the structure,
will distort the diffraction pattern. Specifically, periodic
deviations (such as finite slopes at the phase jumps, a
height deviating from 2π, or rounded edges of the grating
teeth), would result in additional diffraction orders or
distortions of the shapes of the transmitted and tilted beams.

Fabrication was carried out using FIB milling. The structures
are of fractured design, and the cross-sections are correlated
with the topographic profile of the structures—assuming a
linear relationship between milling time and depth. Errors in
fabrication typically arise from ion beam drift during milling,
which can also be caused by local charging during such a
prolonged process.

Figure 8(g) shows a structure of the fractured design that
induces spherical aberration in the beam. Primary spherical
aberration behaves radially as r4. However, from this image
and cross-section, after the first phase jump the slope changes
sign. This is due to an added defocus term, i.e. ar4−br4,
which allows us to design a structure with the same number of
phase jumps that are spread differently in the radial direction.
This approach eases the tolerance on fabrication that would
otherwise be caused by the quartic rise in the radial frequency
of the phase jumps. The additional defocus can be
compensated for easily in the microscope.

We found that a simpler route to the fabrication of such
elements avoids the phase jumps altogether, at the expense of
using a thicker (4π- rather than 2π-equivalent) membrane.
This approach involves the following steps. Recalling that the
phase shift associated with an electron passing through a non-
magnetic material with mean inner potential Ui is C U t,E ij =
where CE is a constant related to the electron’s energy, and
assuming the primary spherical aberration to be the dominant
aberration of the probe-forming optics, the aberrated phase in
radians can be written in the form

C
2

NA , 26s
4 2 2c

p
l

q q= -( ) ( )

where θ is the half-angle of the beam with respect to the optic
axis, NA is the numerical aperture, Cs is the spherical
aberration coefficient, and λ is the electron’s wavelength. We
start with the known (e.g. from Willasch 1975) aberration
function C z2 2s

4 2c p q q l= - D( )/ and define the numerical
aperture, NA, as the angle θ at which no aberrations are
present (χ=0). The resulting focal length, i.e. the defocus
value Δz, is given by the expression z C NA 2.s

2D =
Substituting this equation back gives equation (26) above.

We define a 2π phase shift as one cycle, abbreviated
‘1λ’, and characterize the maximal phase difference induced
by the aberrated phase using the figure of merit ‘peak-to-
valley’ (Smith 2000), which is equivalent to C NA 16s

4 lL =
cycles. Determination of the figure of merit requires finding
the maximum and minimum of the aberrated phase, in this
case 2 2 .max min maxp c pL = c - c =( ) Finding χmax

requires a simple differentiation d d ,c q resulting in the
locations of maxima corresponding to NA 2.max

2 2q = This
expression, in turn, is substituted back into Λ to yield the
above result (in cycles).

In order to correct for spherical aberration, the thickness
profile of the mask must satisfy 0.c j+ = If we further
define t2p as the thickness that is required for one cycle, then
the milled thickness profile of a refractive spherical aberration
corrector is given by the expression
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Figure 8. Example structures milled in silicon nitride for inducing
aberrations in an electron beam. (a) Half-beam tilt; (c) two-fold
astigmatism; (e) three-fold astigmatism; (g) spherical aberration.
((b), (d), (f), (h)) Corresponding intensity cross-sections, as marked
by the dashed lines. The intensity is approximately proportional to
the thickness of the membrane. Reprinted from Shiloh et al (2016)
Ultramicroscopy 163 69–74, Copyright (2016), with permission
from Elsevier.
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where rmax is the radius of the aperture stop, i.e. the radius
that defines the numerical aperture of the probe-forming
optics. The derivation is as follows. Starting from the
relations
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we substitute the first two expressions into the third to obtain
the relation
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We now rewrite the relation for the numerical aperture,
D f r fNA 2 ,= = as D rNA 2 ,q= and in terms of the

maximal radius defining the numerical aperture of the probe-
forming system, i.e. using r D 2,max = we can understand
equation (26) above.

The final thin film refractive spherical aberration
corrector is shown in figure 9(a), with a thickness measure-
ment given in figure 9(b). The thickness measurement was
made using an interferometric light microscope that is able to
resolve vertical changes on the sub-nm scale (courtesy of Nir
Turko).

5. Beam shaping using structured electrostatic
fields

In this section, we show how it is possible to shape electron
wavefunctions using structured electrostatic fields based on
the theoretical discussions presented in section 2. Recent
applications to the generation of caustics and vortices based
on electron waves are reviewed. Both simulated and exper-
imental out-of-focus images and holographic measurements
are reported, in order to illustrate phase shaping effects.

5.1. Simulation of defocused images

Out-of-focus images that are formed by illuminating a spe-
cimen using a coherent electron beam can be simulated by
calculating the image wavefunction in the observation plane
(X, Y, Z) using the Kirchhoff–Fresnel integral (Born and
Wolf 2013, Pozzi 2016)

X Y Z

Z
x y

Z
x X y Y

x y x y

, ,
e

Amp , exp
i

i , d d ,

30

i
2 2ò ò

y

l
p
l

j

= - + -

+

b {
( )

( ) [( ) ( ) ]

( )}
( )

where λ is the de Broglie wavelength of the incident elec-
trons, and β is a phase factor that is not relevant here as only
the intensity, which is proportional to ,2y∣ ∣ is recorded in the
observation plane. x yAmp ,( ) is an amplitude function, which
is used to describe the regions of the sample that are not
transparent to the electron beam and x y,j ( ) is the phase
induced by the structured electrostatic field. Plane wave
illumination is assumed.

5.2. Caustics from oppositely-biased tips

Despite their ubiquity in nature, optical caustics play a crucial
role in fundamental and applied optics. In electron optics,
caustic patterns have been observed and utilized to char-
acterize quadrupole magnets in terms of electromagnetic lens
focus (Schneider 1957), to study time-dependent magnetic
fields (Laroze and Rivera 2006), to measure lens aberrations
(Kanaya and Kawakatsu 1960), and, recently, to produce
electron vortex beams (Petersen et al 2013) and Airy beams
(Voloch-Bloch et al 2013). Here, we show how two oppo-
sitely-biased metallic tips can be used to sculpt an electron
plane wave inside a TEM, in order to generate caustic patterns
in defocused bright-field images (Tavabi et al 2015).

Two electrochemically-etched needle-shaped tungsten
tips were mounted in a NanoFactory single-tilt in situ elec-
trical biasing TEM specimen holder, which was inserted into
an FEI Titan 60–300 TEM equipped with a high-brightness
field emission gun, a Lorentz lens, a Gatan imaging filter and
a 2048×2048 pixel charge-coupled device camera. One of
the tips was inserted in a specimen mount, while the other was
placed in a tip, which is designed for applications in scanning
tunneling microscopy. The tips could be positioned relative to
each other in three dimensions using a piezo-driven system.
They were aligned to be at the same height and approximately
collinear, but opposite to each other. A potential difference
was applied between them using an external power supply, in
order to create an electric field between them to modulate the
phase of an incident electron plane wave. Highly defocused
bright-field images were then recorded to show the resulting
interference patterns. The microscope was operated at an
accelerating voltage of 300 kV using non-standard lens
excitations to provide an optimally large field of view with
high coherence and brightness.

Figure 10(a) shows a defocused bright-field TEM image
of the two tips, which are separated by 0.9 μm and imaged at

Figure 9. Continuous phase mask spherical aberration correction. (a)
Image of the corrector. (b) Thickness measurement (solid curve)
using an optical interferometric microscope courtesy of Nir Turko,
and fit to a fourth order polynomial (dotted curve). Reprinted from
Shiloh et al (2018) Ultramicroscopy 189 46–53, Copyright (2018),
with permission from Elsevier.
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a nominal defocus of −7 mm (underfocus, with the objective
lens of the microscope focused above the specimen), initially
without a potential difference applied between the tips. In this
image, only Fresnel diffraction fringes around the two opaque
tips are visible. The fact that the spacings of the Fresnel
fringes around the tips are approximately equal confirms that
they are at the same height in the electron beam direction.
When a potential difference of 40 V is applied between the
tips, a two-beam interference fringe pattern terminated by a
two-wing caustic is formed close to the negatively-biased tip,
while the wave field around the positively-biased tip takes the
form of a magnified shadow image surrounded by Fresnel
fringes. The interference pattern behaves similar to that
observed for a single tip placed in front of a planar electrode
(Pozzi et al 2014). If the potential difference between thee tips
is increased further, then the overlap region close to the
negatively-biased tip increases in width and the corresp-
onding two-beam interference fringes become finer, as shown
in figures 10(c) and (d) for potential differences of 60 and
100 V, respectively. Furthermore, two high-contrast folds
start to appear at the termination of the interference fringes,
eventually forming a butterfly-like pattern (figure 10(d)), with
a fringe modulation where they cross.

Even though these images were recorded at the same
defocus without adjusting the settings of the projector lenses
in the microscope, there is a slight change in magnification
and a small shift in their positions. These effects may arise
from the non-standard lens settings used, as well as from
slight changes in the excitations of the condenser lenses. As a

result, accurate scale bars cannot be shown for these exper-
imental images.

Simulations of the defocused images of caustic patterns
were performed using the Kirchhoff–Fresnel integral based
on a Fourier transform approach. A square region of size
4096×4096 pixels with a side of 8.192 μm was calculated
and the central part was then displayed to match the field of
view of the experimental images. A lateral offset of 2 μm was
introduced and a linear phase contribution was subtracted to
minimize artifacts due to boundary conditions. Additional test
calculations of larger size and higher sampling density
showed no significant differences.

In order to calculate the amplitude and phase of the
transmission function of the specimen, the following proce-
dures were adopted. An equipotential surface plot in the
object plane was first calculated using equation (15) with
CV=1 so that the values of potential of each tip could be
determined, so that their shapes could be fitted. Assuming that
the tips were opaque to the electrons, the amplitude Amp(x, y)
was set to zero for values of potential inside the tips and unity
outside. The value of CV was then rescaled so that the
potential difference corresponded to the experimental value.
Inserting these values into the expression for the phase in
equation (16), the complete transmission function of the
specimen was obtained.

The resulting simulated defocused images are shown in
figures 11(a)–(d), each corresponding to the experimental
conditions used in figure 10, i.e. for potential differences of
(a) 0, (b) 40, (c) 60, and (d) 100 V, for a constant defocus of
−7 mm. The amplitude function was calculated by taking
values of 3.5 and −2.5 V for the potentials of the tips
(CV=1), with two line charges (20 μm in length) aligned
collinearly and separated by 0.9 μm. There is a satisfying
degree of agreement between the experimental and simulated
images.

5.3. Electron vortex beams from electrostatic monopoles

Electron vortex beams have recently been generated using the
magnetic monopole field at one extremity of a dipole-like
magnetic needle (Béché et al 2014, Blackburn and Loudon
2014). This approach is based on the magnetic Aharonov–
Bohm effect (Aharonov and Bohm 1959) and relies on the
fact that the magnetic field at the end of a long magnetic rod
closely resembles the magnetic monopole that can be used to
impart a vortex onto an electron beam. However, it is not
straightforward to vary the topological charge of such elec-
tron vortices once the device is fabricated. In addition, the
magnetic nature of the device prevents it from being used
close to the strong magnetic lenses inside an electron
microscope, in particular in the back focal plane of the
objective lens. Furthermore, the physical endurance of a
magnetic needle may be an obstacle to using such an
approach to reach larger topological charges. However, these
technical constraints can be overcome by using the electro-
static counterpart of the Aharonov–Bohm effect (Pozzi 2016)
and, specifically, by using the electrostatic monopole field at
the end of a dipole line (Pozzi et al 2017, Tavabi et al 2018).

Figure 10. Experimental defocused bright-field TEM images of two
tungsten tips separated by 0.9 μm recorded at a nominal defocus of
−7 mm. The potential differences between the tips are (a) 0, (b) 40,
(c) 60, and (d) 100 V. The upper left tip is negatively-biased, while
the lower right tip is positively-biased. Reprinted from Tavabi et al
(2015) Ultramicroscopy 157 57–64, Copyright (2015), with
permission from Elsevier.
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Such an electrostatic dipole line can be approximated by
two parallel wires in close proximity with a suitable potential
difference between them. Two parallel charged wires of length
100 μm and separation 200 nm were selected for simulation.
An equipotential surface plot in the object plane was calculated
using equation (15) with CV=1, so that the values of potential
of both wires could be determined, so that the shapes of the
two wires could be fitted. The potentials are then chosen to be
±2 V. Assuming the wires were opaque to the electrons, the
amplitude Amp(x, y) was set to zero inside the wires and unity
outside. The phase shift was calculated for 300 kV electrons
using equation (16). The resulting equiphase lines (with a
spacing of π/4 radians), together with the amplitude, are shown
in figure 12 in a square field of view that has a side of 1 μm.
The white bars within the tip shadows mark the positions of the
line charges. Upon applying a potential difference of 4 V, the
maximum azimuthal phase difference accumulated between the
two wires was 5.2 π. For the same shapes of the two wires, a
variable potential difference and phase shift could be obtained
by adjusting the value of CV.

Figures 13(a)–(c) show simulated Fraunhofer and Fresnel
images, as well as the phase profile of the Fresnel config-
uration for two charged wires of length 100 μm with a
potential difference of 4 V between them. The aperture size is
20 μm. In practice, such a metallic aperture should be placed
in a plane that is conjugate to that of the two wires, so as to
not perturb the electric fields. Figure 13(a) shows the
Fraunhofer diffraction image, i.e. the spatial frequency spec-
trum. The corresponding Fresnel diffraction image and its
phase profile at a defocus value of 40 cm are shown in

figures 13(b) and (c), respectively. We note that the Fraun-
hofer diffraction image does not show a clear zero-intensity
center, which is typically observed in vortex beams. This
effect is probably associated with the combined influence of
diffraction from the shadow of the two wires and the finite
separation between them. The very low contrast at the center
of the Fresnel diffraction image clearly demonstrates the
presence of the phase singularity in the center. By increasing
the potential difference to 40 V, as shown in figures 13(d)–(f),
the Fraunhofer diffraction image (figure 13(d)) has a clear
intensity minimum and circular symmetry at its center, the
radius of which increases with potential difference. The
Fresnel diffraction image (figure 13(e)), together with its
phase profile (figure 13(f)), show impressive contrast sur-
rounding the center of the electrostatic monopole, as well as
larger quanta of OAM. The experimental realization of such a
device has recently been demonstrated (Tavabi et al 2018).

6. Summary and outlook

In this manuscript, we have reviewed a selection of our recent
efforts at shaping electron wavefunctions using either ampl-
itude or phase masks that are generated using thickness-
modulated material films or structured electromagnetic fields
from miniature devices. These approaches have been used
successfully to generate electron vortex beams, Airy beams and
caustics, as well as for 3D shaping and spherical aberration
correction. Diffractive holograms and refractive phase masks
are currently proving to be the most popular methods for such
experiments, due to their fidelity and applicability. However,

Figure 12. Equiphase lines (black lines) of spacing π/4 radians and
overlaid amplitude image (black shadows) corresponding to a pair of
line charges (white bars) of length 100 μm and separation 200 nm
with constant charge densities for CV=1 and oppositely charged
potentials ±2 V. Only the tip regions of the line charges are shown
in a 1 μm×1 μm field of view. Reprinted from Pozzi et al (2017)
Ultramicroscopy 181 191–196, Copyright (2017), with permission
from Elsevier.

Figure 11. Simulated defocused bright-field TEM images of the two
tips separated by 0.9 μm for a constant defocus of −7 mm. The
potential differences between the tips are (a) 0, (b) 40, (c) 60, and (d)
100 V. The left tip is negatively-biased, while the right tip is
positively-biased. Reprinted from Tavabi et al (2015) Ultramicro-
scopy 157 57–64, Copyright (2015), with permission from Elsevier.
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since they are both based on sculpting thin films, their use
always results in an intensity reduction due to absorption and
scattering. Moreover, they are only able to impart static phase
modulations to electrons of given energy. In contrast, the
interaction between electrons and electromagnetic fields is
attractive for applications due to the much higher (close to
100%) transmission efficiency and flexible tunablity. However,
just as for aberration correctors for electron lenses (Clark et al
2013), structured electromagnetic fields are only applicable for
producing limited kinds of electron wavefunctions, in contrast
to spatial light modulator technologies, which have recently
emerged as powerful tools for the on-demand creation of
arbitrary optical fields in light optics (Forbes et al 2016). The
next promising direction for electron wavefront shaping would
be a dynamically programmable spatial electron modulator.
The cornerstone of such a device is a tunable phase shifter,
which can be produced in the form of a pixelated array and
controlled independently. Similar ideas have been developed in
reflective EBL using micron-sized electrostatic mirrors (Car-
roll 2015), and have recently been demonstrated using an array
of 2×2 electrostatic einzel lenses (Verbeeck et al 2018). In
the future, more pixel elements should be implemented to
reproduce a desired phase profile with good quality. In order to
determine the best phase shifting pixel elements, as well as
their numbers and arrangements, synergy is required between
analytical and numerical simulations and state-of-the-art micro-
and nano-fabrication technologies.
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