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S1: REPRESENTATIVE OFF-AXIS ELECTRON HOLOGRAM

FIG. S1. Off-axis electron hologram of Fe3O4 particles, showing well-resolved holographic interference fringes with a spacing
of approximately 2.7 nm. The scale bar represents 100 nm. The inset shows magnified holographic interference fringes around
the middle particle.

S2: REPRESENTATIVE PHASE IMAGES

Figure S2(a) shows the magnetic vector potential contribution to the phase of the Fe3O4 particles and a corre-
sponding phase contour map. The asymmetry of the phase contours may stem from magnetization sources located
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outside the field of view or from artifacts such as specimen charging or changes to the biprism wire over time. Figure
S2(b) shows the ramp-corrected phase image, obtained by subtracting the fitted ramp shown in Figure S2(d).

FIG. S2. Phase images (top) and corresponding phase contour maps (bottom). The scale bar represents 100 nm. (a) Magnetic
vector potential contribution to the phase measured from Fe3O4 particles. (b) Ramp correction applied to (a). (c) Magnetic
phase image calculated by applying the forward model to the reconstructed magnetisation distribution shown in Figure 5a
(left). (d) Reconstruction of the additional phase ramp.

S3: PHASE INTEGRAL

To clarify the derivation of the inductive moment mB , we begin with the standard definition of the inductive
moment as the volume integral of the magnetic induction B:

mB =
1

µ0

∫∫∫
V

B(r) d3r

Since the magnetic induction B is related to the magnetic vector potential A through B = ∇ ×A, we can rewrite
the above expression using vector calculus identities. Applying Gauss’s theorem to the curl of A, and recognizing
that the phase shift φ(r) obtained from off-axis electron holography is proportional to the line integral of the in-plane
magnetic vector potential, we arrive at a relationship between the inductive moment and a contour integral of the
phase shift:

mB ∝
∮
∂S

φ(r) t̂(θ) dθ

In this expression, the integral is taken over a circular path with radius R, and t̂(θ) represents the unit tangential
vector along the path. The direction of the tangential vector t̂(θ) = [− sin θ, cos θ] follows from differentiating the
position vector in polar coordinates [cos θ, sin θ], defining the direction along which the phase gradient is projected.

This leads to the following expression for the inductive moment1:

mB =
ℏR
eµ0

∫ 2π

0

φ(R cos θ,R sin θ)

[
− sin θ
cos θ

]
dθ

The vector integral can then be separated into its x- and y-components:

mBx =
ℏR
eµ0

∫ 2π

0

−φ(R cos θ,R sin θ) sin θ dθ

mBy =
ℏR
eµ0

∫ 2π

0

φ(R cos θ,R sin θ) cos θ dθ
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Through this decomposition, the vector inductive moment mB = (mBx,mBy) is reconstructed, and its orientation in
the plane can be determined by:

θm = arctan

(
mBy

mBx

)

S4: MEASUREMENT ERRORS ASSESSMENT

The calculated phase image shown in Figure S2(c) can be used to retrospectively assess the measurement errors
in the input phase image shown in Figure S2(a). To do this, the input phase image was first ramp-corrected by
subtracting the fitted phase ramp. The difference between the ramp-corrected input phase and the phase calculated
from the reconstructed magnetization is shown in Figure S3(a). By plotting the resulting phase differences in a
histogram, as shown in Figure S3(b), a Gaussian distribution is revealed, with a standard deviation of 45.16 mrad,
which provides an estimate of the measurement noise.

FIG. S3. (a) Difference between the experimental magnetic phase image and the phase image calculated from the reconstructed
magnetisation distribution. The scale bar represents 100 nm. (b) Histogram of the phase differences. The standard deviation
of 45.16 mrad is an indicator for the measurement error of the phase image.
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S5: SAMPLE THICKNESS ESTIMATION

Sample thickness was estimated by measuring the phase shift caused by the MIP and using the known accelerating
voltage and the MIP value for magnetite. According to the electrostatic phase shift equation: φE = CE · V0 · t, where
φE is the electrostatic phase shift, V0 is the assumed MIP of magnetite2, approximately 17 V, CE is the electron
interaction constant, which has a value of 6.53 × 106 rad V−1 m−1, and t is the sample thickness. By measuring
the electrostatic phase distribution along the long edge of the selected particle in Figure S4(a), we estimate the
nanoparticle thickness. For a cubic magnetite nanoparticle with a side length of 73 nm, the predicted MIP-induced
phase shift at the center is 8.10 rad, closely matching the measured value of 8.11 rad. Hence, the nanoparticle thickness
is estimated to be 73 nm.

FIG. S4. (a) MIP contribution to the phase measured from Fe3O4 particles. The scale bar represents 100 nm. (b) Phase profile
of the white box from left to right along the long side (a).

S6: NONLINEAR LEAST-SQUARES FITTING

Sphere Fit

To analyze the phase distribution obtained through electron holography, a nonlinear least-squares fitting approach
was employed to extract the perpendicular magnetic field component (B⊥) from the phase map. The fitting model is
based on the theoretical relationship between the electron-optical phase and the magnetic field distribution, with the
nanoparticle assumed to be spherical. The model for the magnetic field is expressed as3:

f(B⊥, x) =

{
e
ℏB⊥

a3−(a2−x2)
3/2

x+ϵ , |x| ≤ a,
e
ℏB⊥

a3

x+ϵ , |x| > a,

where a is the radius of the uniformly magnetized nanoparticle, and ϵ is a small positive constant (10−10) introduced
to avoid division by zero at x = 0. The fitting procedure began with an initial guess for B⊥ = 0.6 T, which corresponds
to the saturation magnetization of the nanoparticle. The optimization aimed to minimize the residual sum of squares
between the experimental data and the theoretical model.

To evaluate the robustness of the fitting results, the covariance matrix was computed from the Jacobian matrix
obtained during the fitting process. The covariance matrix is given by:

Cov =
Resnorm
N − P

(
JTJ

)−1
,

where N is the number of data points, P is the number of fitting parameters, and J is the Jacobian matrix. The
diagonal elements of the covariance matrix provide the standard errors for B⊥.
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Additionally, we assessed the impact of uncertainties in the characteristic radius a on the fitted B⊥ values by
performing the fitting process with perturbed values of a, specifically a+∆a and a−∆a, where ∆a represents a 5%
relative uncertainty in a. The sensitivity of B⊥ to changes in a was evaluated using numerical differentiation:

∂B⊥

∂a
=

B⊥(a+∆a)−B⊥(a−∆a)

2∆a
.

This sensitivity analysis allows us to estimate the contribution of the uncertainty in a to the total error in B⊥. By
combining this with the standard error derived from the covariance matrix, we obtained the final uncertainty for B⊥.

Cube Fit

A similar nonlinear least-squares fitting approach was applied to extract the magnetic field component B⊥ from
experimental data, we consider the nanoparticle as a uniformly magnetized cube. Let the cube have length L and the
magnetization direction β. The magnetization is given by

M = M0(cosβ, sinβ, 0).

The least-squares fitting model for the magnetic field is expressed as4:

φm(x, y) = −µ0M0Lz

4ϕ0
cosβ[F0(x− Lx

2
, y − Ly

2
)− F0(x+

Lx

2
, y − Ly

2
)−

F0(x− Lx

2
, y +

Ly

2
) + F0(x+

Lx

2
, y +

Ly

2
)]+

µ0M0Lz

4ϕ0
sinβ[F0(y −

Ly

2
, x− Lx

2
)− F0(y +

Ly

2
, x− Lx

2
)−

F0(y −
Ly

2
, x+

Lx

2
) + F0(y +

Ly

2
, x+

Lx

2
)],

where ϕ0 is the magnetic flux quantum and F0(x, y) is an identity given by the following expression:

F0(x, y) =

∫
log(x2 + y2)dx = x log(x2 + y2)− 2x+ 2y arctan(

x

y
).

The fitting procedure was initiated with an initial guess for B⊥ = 0.6 T, which corresponds to the nanoparticle’s
saturation magnetization. For a line profile taken through the center of the particle in a direction perpendicular to
B⊥, the expression simplifies to:

φm(x, y)|y=0 = −B⊥Lz

4ϕ0
cosβ[F0(x− Lx

2
,−Ly

2
)− F0(x+

Lx

2
,−Ly

2
)−

F0(x− Lx

2
,
Ly

2
) + F0(x+

Lx

2
,
Ly

2
)]+

B⊥Lz

4ϕ0
sinβ[F0(−

Ly

2
, x− Lx

2
)− F0(

Ly

2
, x− Lx

2
)−

F0(−
Ly

2
, x+

Lx

2
) + F0(

Ly

2
, x+

Lx

2
)].

Similarly, we evaluated the impact of uncertainties in the characteristic length L on the fitted B⊥ values by performing
the fitting process with perturbed values of L, specifically L +∆L and L −∆L, where ∆L represents a 5% relative
uncertainty in L. The sensitivity of B⊥ to changes in L was determined using numerical differentiation:

∂B⊥

∂L
=

B⊥(L+∆L)−B⊥(L−∆L)

2∆L
.

This sensitivity analysis allows us to estimate the contribution of the uncertainty in L to the total error in B⊥.
By combining this contribution with the standard error derived from the covariance matrix, we obtained the final
uncertainty for B⊥.
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S7: MODEL-BASED ITERATIVE MAGNETIZATION RECONSTRUCTION

A model-based approach was employed to reconstruct the projected in-plane magnetization distribution from mag-
netic phase images obtained via off-axis electron holography. Figure S5(a) illustrates both the forward model and the
inverse problem associated with magnetization reconstruction from experimentally acquired magnetic phase images.
In this approach, a mask is first applied to delineate the specimen’s edge, and an initial estimate for the magnetization
distribution M (x, y) is made on a two-dimensional Cartesian grid. A simulated magnetic phase image φ(x, y) is then
computed from this initial magnetization distribution. To ensure accuracy, known analytical solutions for phase shifts
of simple geometric objects are utilized, with numerical discretization carried out in real space to avoid artifacts that
may arise from discretization in Fourier space. This forward simulation is incorporated into an iterative scheme to
solve the inverse problem, reconstructing the projected in-plane magnetization distribution from a two-dimensional
phase image, as depicted in Figure S5(b). The iterative nature of this method allows the integration of additional
physical constraints, such as the limitation that the angle between the magnetic moments of adjacent discretized cells
cannot exceed a certain threshold. It is crucial to ensure that the size of the discretized cells is smaller than the
exchange length of the magnetic material to maintain the accuracy of the reconstruction.

FIG. S5. Schematic of the model-based iterative magnetization reconstruction algorithm used in this study. (a) The forward
model and inverse problem. (b) Flowchart illustrating the iterative process for reconstructing the projected in-plane magneti-
zation from an experimental magnetic phase image.

S8: MICROMAGNETIC SIMULATION

Based on two-dimensional transmission electron microscopy (TEM) images, the three-dimensional morphology of
the sample was inferred, and truncated cube geometries were constructed to model the Fe3O4 nanoparticles5,6. To
ensure computational accuracy, a cubic mesh size of 3 nm was adopted for discretization, which is smaller than
the exchange length of Fe3O4 (9.45 nm). Convergence of the simulation results was validated through comparison
with a finer 2 nm mesh. The material parameters were set according to the bulk properties of Fe3O4

7,8: saturation
magnetization Ms = 4.85×105 A/m, exchange stiffness A = 1.32×10−11 J/m, and first-order cubic magnetocrystalline
anisotropy constant K1 = −1.36× 104 J/m3, with easy axes along the [111] directions. The Landau–Lifshitz–Gilbert
equation was employed to simulate the magnetization dynamics, with the Gilbert damping constant set to α = 0.5 to
facilitate effective relaxation.
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To accurately replicate the experimental magnetization process, the simulation was carried out in two steps: (1) an
external magnetic field, equivalent to the objective lens field, was applied to saturate the system; (2) the field was then
quasi-statically removed to achieve the remanent state. The simulated magnetization vector field was subsequently
projected and integrated along the electron beam direction (z-axis), and the corresponding magnetic phase shift was
calculated. In addition, in situ tilting experiments reveal that the upper-right particle develops a clearly observable
closed-flux domain structure upon tilting (Figure S6(e)–(h)), consistent with the simulated vortex configuration.

FIG. S6. (a–d) Experimentally obtained magnetic phase shift images with increasing sample tilt angles from left to right. (e–g)
Cosine of the experimental phase images, representing the projected magnetic induction flux lines. The induction direction
follows the color wheel shown in the inset.
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