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Materials and Methods  

Materials:  

If not specified, all chemical reagents were purchased from Sigma-Aldrich. Zinc nitrate 

hexahydrate (Zn(NO3)2·6H2O), 2-Aminoterphthalic acid, nickel nitrate hexahydrate 

(Ni(NO3)2·6H2O), gold chloride trihydrate (HAuCl4), N,N-dimethylformamide (DMF), 

ethanol and potassium bicarbonate (KHCO3) were all of analytical grade and used as 

received without further purification. Meanwhile, all solutions were prepared with 

Milli-Q water (DI-H2O, Ricca Chemical, ASTM Type I). The carbon paper and Nafion 

(N-117 membrane, 0.18 mm thick) membrane were purchased from Alfa Aesar.  

Characterization:  

The X-ray diffraction (XRD) patterns were obtained by using a Bruker D4 X-ray 

powder diffractometer using Cu Kα radiation (1.54184 Å). Field emission scanning 

electron microscopy (FE-SEM) images were collected on a FEI Magellan 400 L 

scanning electron microscope. High angle annular dark-field (HAADF)-scanning 

transmission electron microscopy (STEM) images and Energy Dispersive X-Ray 

Spectroscopy (STEM-EDS) analysis were obtained in an aberration corrected 

transmission electron microscope FEI Titan G2 80–200 (ChemiSTEM). It is equipped 

with four EDX detectors and operates at 200 kV. Parts of HAADF-STEM micrographs 

were acquired in a probe-corrected Titan Themis microscope (Thermo Fisher Scientific) 

operated at 300 kV by using an HAADF detector and a Tecnai F20 field emission gun 

microscope with a 0.19 nm point-to-point resolution at 200 kV. Images have been 

analyzed by using Gatan Digital Micrograph software. X-ray photoelectron 
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spectroscopy (XPS) was performed on a Phoibos 150 analyser (SPECS GmbH, Berlin, 

Germany) in ultra-high vacuum conditions (base pressure 4×10−10 mbar) with a 

monochromatic aluminum Kα X-ray source (1486.74 eV). Binding energies (BE) were 

determined using the C 1s peak at 284.5 eV as a charge reference. Inductively coupled 

plasma-mass spectrometry (ICP-MS) measurements were carried out to determine the 

concentration of Ni and Au. Raman spectra were obtained using Senterra. Fourier 

transformed infrared (FTIR) spectroscopy data were recorded on an Alpha Bruker 

spectrometer.  
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XAFS Measurements: 

The X-ray absorption fine structure (XAFS) spectra (Fe K-edge) were collected at 

1W1B station in Beijing Synchrotron Radiation Facility (BSRF). The storage rings of 

BSRF were operated at 2.5 GeV with an average current of 250 mA. Using Si(111) 

double-crystal monochromator, the data collection were carried out in 

transmission/fluorescence mode using a ionization chamber. All spectra were collected 

in ambient conditions.  

XAFS Analysis and Results: 

The acquired EXAFS data were processed according to the standard procedures using 

the ATHENA module implemented in the IFEFFIT software packages. The k3-

weighted EXAFS spectra were obtained by subtracting the post-edge background from 

the overall absorption and then normalizing with respect to the edge-jump step. 

Subsequently, k3-weighted χ(k) data of Fe K-edge were Fourier transformed to real (R) 

space using a hanning windows (dk=1.0 Å−1) to separate the EXAFS contributions from 

different coordination shells. To obtain quantitative structural parameters around central 

atoms, least-squares curve parameter fitting was performed using the ARTEMIS 

module of IFEFFIT software packages. 

The k3 weighting, k-range of 2.4 –11.9 Å−1 and R range of 0.95 – 2.25 Å were used for 

the fitting. The four parameters, coordination number, bond length, Debye-Waller 

factor and E0 shift (CN, R, σ2, ΔE0) were fitted without anyone was fixed, constrained, 

or correlated. [S1-3] 
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Ink Preparation in H-cell: 

2 mg synthesized different samples and 50 µl 5 wt% Nafion solutions were dissolved 

in ethanol (500 µL) and ultrasonicated for 1 h to form an evenly suspension for the 

further electrochemical experiments. To prepare the working electrode, 500 µL above 

as-prepared inks were dropped onto the two sides of the carbon paper electrode with 

1×1 cm2 and then dried at room temperature, giving a catalyst loading mass of ~1 mg 

cm−2. 

Ink Preparation in Flow-cell: 

The catalyst ink was prepared by adding 18 mg Au0.5/Ni-N-O-C into a mixed solution 

of 4 mL isopropanol/water (3:1 (v/v)), and 90 µL Nafion solution (5 wt%), and then 

was ultrasonically treated for 1 hour to form an evenly suspension for the further 

electrochemical experiments. To prepare the working electrode, the above as-prepared 

inks were sprayed onto the gas-diffusion electrode (GDE) with 3×3 cm2 by air-busher 

and then dried at room temperature overnight. The final electrode in flow cell was 1×1 

cm2 with a catalyst loading mass of ~1 mg cm−2.  
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Electrochemical Measurement in H-cell:  

The electrocatalytic performance of different catalysts was measured at room 

temperature by using a gas-tight H-cell with two-compartments separated by Nafion N-

117 membrane with a continuous Ar or CO2 gas injection. Each compartment contained 

70 ml electrolyte (0.5 M KHCO3 made from de-ionized water). In a typical experiment, 

a standard three electrode setup in 0.5 M KHCO3 solution was assembled: an Ag/AgCl 

electrode as a reference electrode, a Pt plate as a counter electrode and a carbon paper 

coated with the different samples as a working electrode (surface area = 1 cm2). The 

potentials were measured versus Ag/AgCl and converted to the reversible hydrogen 

electrode (RHE) according to the following equation: ERHE = E0Ag/AgCl + EAg/AgCl + 0.059 

× pH, pH=7. All electrochemical results were shown without iR-compensation by using 

a computer-controlled BioLogic VMP3 electrochemical workstation. Meanwhile, the 

linear sweep voltammetry (LSV) was performed at a scan rate of 20 mV s−1 from 0 V 

to −1.5 V vs. Ag/AgCl in Ar-saturated 0.5 M KHCO3 and CO2-saturated 0.5 M KHCO3 

as supporting electrolyte. The Electrochemical Active Surface Area (ECSA) of different 

samples was estimated from the electrochemical capacitance measurements. They were 

tested with scan rates ranging from 2 to 14 mV s−1 with an interval of 2 mV s−1. The 

electrochemical double-layer capacitance (Cdl) was estimated by plotting ja-jc against 

the scan rate, where the slope was twice that of Cdl. Moreover, electrochemical 

impedance spectroscopy (EIS) of different samples was carried out in a frequency range 

from 100 kHz to 100 MHz. 

Before the electrochemical CO2 reduction experiments, an average rate of 20 ml min−1 
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Ar was injected into cathodic electrolyte to form an Ar-saturated solution. During 

electrochemical CO2 reduction experiments, the CO2 gas was delivered at an average 

rate of 20 ml min−1 at room temperature and ambient pressure, measured downstream 

by a volumetric digital flowmeter. The gas phase composition was analyzed by gas 

chromatography (GC) during potentiostatic measurements every 15 min. The 

calibration of peak area vs. gas concentration was used for the molar quantification of 

each gaseous effluent. The Faradaic efficiency was calculated by determining the 

number of coulombs needed for each product and then dividing by the total charge 

passed during the time of the GC sampling according to the flow rate. Liquid products 

were analyzed afterwards by quantitative 1H-NMR using water as the deuterated 

solvent. 

Electrochemical Measurement in Flow-cell:  

Electrochemical measurements at high current densities were performed in a flow cell 

using the galvanostatic electrolysis method. GDE coated with catalyst (1.0 cm×1.0 cm), 

Ag/AgCl (saturated KCl) electrode, and a Ni foam (1.0 cm×1.0 cm) were used as 

cathode (for CO2 reduction), reference electrode and anode (for O2 evolution), 

respectively. Catholyte and anolyte chambers had an inlet and an outlet for electrolyte, 

while the CO2 gas diffusion chamber had an inlet and an outlet for CO2 gas, and the 

Ag/AgCl electrode was fixed in the catholyte chamber. Catholyte and anolyte chambers 

were separated by an anion exchange membrane, anionic exchange membrane and 

electrolyte chamber for sealing when assembling the flow cell. Catholyte (1 M KHCO3) 

was circulated in cathode chamber by using a conventional peristaltic pump, while the 
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anolyte (1 M KHCO3) was circulated through the anode chamber by using a specially 

made gas-liquid mixed flow pump. CO2 was delivered to the back of the catholyte 

chamber at a constant flow 50 sccm by means of a digital mass flow controller. 
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In-situ attenuated total reflectance surface-enhanced infrared absorption 

spectroscopy (ATR-SEIRAS) measurements： 

Surface enhanced infrared absorption spectroscopy (SEIRAS) with an attenuated total 

reflection (ATR) configuration was employed. A Thermo Nicolet 8700 spectrometer 

equipped with MCT detector cooled by liquid nitrogen was employed for the 

electrochemical ATR-SEIRAS measurements. The chemical deposition of the Au thin 

film (~60 nm) on top of the Si prism was performed according to a “two-step wet 

process”. Before the chemical deposition of Au, the Si prism surface for IR reflection 

was polished with a Diamond suspension and cleaned in water with sonication. Then 

the prism was soaked in a piranha solution (7:3 volumetric ratio of 98% H2SO4 and 30% 

H2O2) for 2 hours. 30 μL ink was deposited and dried on the Au-film working electrode, 

then the ink-coated prism was assembled into a homemade spectro-electrochemical cell 

as the working electrode, Ag/AgCl was used as reference, which was introduced near 

the working electrode via a Luggin capillary, a Pt mesh (1 cm × 1 cm) was served as 

the counter electrode. All spectra were shown in 𝛥𝛥𝑅𝑅
𝑅𝑅

= 𝐸𝐸𝑠𝑠−𝐸𝐸𝑅𝑅
𝐸𝐸𝑅𝑅

 , with Es and ER 

representing the sample and reference spectra, respectively. The spectral resolution was 

4 cm−1 for all the measurements if not otherwise mentioned. ATR-SEIRAS was 

recorded on CO2-saturated 0.5 M KHCO3 by stepwise switching the potential from 

−0.40 V to −0.90 V vs. RHE.  
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Calculation Methods: 

Faradaic Efficiency (FE) calculations: 

Details concerning the Faradaic Efficiency (FE) calculations are shown below. [S4]  

The partial current density for a given gas product was calculated as below: 

𝑗𝑗𝑖𝑖 = 𝑥𝑥𝑖𝑖 × 𝑉𝑉 × 𝑛𝑛𝑖𝑖𝐹𝐹𝑃𝑃0
𝑅𝑅𝑅𝑅

× (𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑐𝑐𝑒𝑒𝑎𝑎)−1                            (eq. S1) 

Where xi is the volume fraction of a certain product determined by online GC 

referenced to calibration curves from standard gas samples, V is the flow rate, ni is the 

number of electrons involved, P0= 101.3 kPa, F is the Faraday constant, and R is the 

gas constant. The corresponding FE at each potential is calculated by 

𝐹𝐹𝐹𝐹 = 𝑗𝑗𝑖𝑖
𝑗𝑗

× 100%                                                 (eq. S2) 

 

TOF calculations:  

The TOF was calculated through the following equation:[S4] 

𝑇𝑇𝑇𝑇𝐹𝐹 (ℎ−1) = 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑛𝑛𝐹𝐹
𝛼𝛼×𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝/𝑀𝑀𝑚𝑚𝑚𝑚𝑝𝑝𝑐𝑐𝑚𝑚

× 3600                                            (eq. S3) 

Iproduct: partial current density of CO; 

n: number of electrons transferred for CO2 to CO, 2; 

F: Faradaic constant, 96485 C/mol; 

Mcat: catalyst mass in the electrode; 

α: mass ratio of active atoms in the catalyst, Ni; 

Mmetal: atomic mass of metal; 
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DFT Calculations: 

Density Functional Theory (DFT) calculations with spin polarization were performed 

using the Vienna Ab initio Simulation Package (VASP) code,[S5] employing the 

projector augmented wave (PAW) method.[S6-9] The generalized gradient approximation 

(GGA), with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was 

employed to set the plane wave basis. [S10] A 2×2×1 k-point mesh was applied to sample 

the Brillouin zone for all supercells, with a plane wave cutoff energy of 500 eV. Atomic 

structure relaxation continued until residual forces were below 0.05 eV/Å. To account 

for van der Waals interactions between molecules, the DFT-D3 approach was 

adopted.[S11] Gibbs free energies for individual reaction steps were calculated using the 

computational hydrogen electrode (CHE) model.[S12] Solvation effects were also 

considered, stabilizing *CO by 0.1 eV and COOH* by 0.25 eV.[S13] Since the relatively 

large error in gas-phase CO molecules, we applied a correction of −0.51 eV.[S13] After 

the correction, the calculated reversible potential for the entire process (CO2 + 2H+ + 

2e− ↔ CO + H2O) is −0.07 V vs. RHE, which is in close agreement with the 

experimental value of −0.1 V vs. RHE. A vacuum thickness of over 12 Å was applied 

to ensure adequate separation between the slab and its periodic images along the normal 

direction. The optimized structural model is shown in Figure S29. For the 

electrochemical CO2 reduction reaction (eCO2RR), the following elementary steps were 

considered: 

CO2(g) + * + H+(aq) + e- ↔ *COOH (eq. S4) 

*COOH + H+(aq) + e- ↔ *CO + H2O(l) (eq. S5) 

*CO ↔ CO(g) + * (eq. S6) 
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Here, (g), *, and (aq) represent the gaseous phase, adsorption state, and aqueous phase, 

respectively. The free energies of each species were calculated using the following 

formula: 

G = EDFT + EZPE + ∫CpdT −TS (eq. S7) 

where EDFT represents the total energy calculated by DFT, EZPE is the zero-point energy, 

Cp is the heat capacity and S is the entropy. The latter three terms are calculated from 

vibrational frequencies within the ideal-gas limit and harmonic limit at 298.15 K for 

gas molecules and adsorbates, respectively.[S14] The corresponding values are provided 

in Table S4 and Table S5.  
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Figure S1. XRD patterns of IRMOF-3 and Ni-IRMOF-3. 
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Figure S2. FTIR spectra for IRMOF-3 and Ni-IRMOF-3 samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm−1)

 IRMOF-3
 Ni-doped IRMOF-3



15 
 

 

Figure S3. SEM images of (a, b) IRMOF-3 and (c, d) Ni-IRMOF-3. 
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Figure S4. XRD patterns for N-O-C. 
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Figure S5. Raman spectra for (a) N-O-C and (b) Ni-N-O-C. 
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Figure S6. XRD patterns for Aux/Ni-N-O-C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 
 

 
Figure S7. Low-magnification HAADF STEM images of N-O-C. 
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Figure S8. (a-c) High magnification aberration-corrected HAADF STEM images of Ni-N-O-C 
sample. 
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Figure S9. (a-c) High magnification aberration-corrected HAADF STEM images of Au0.5/Ni-N-O-
C sample. 
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Figure S10. (a) AC HAADF-STEM image of one of the Au nanoparticles in Au0.5/Ni-N-O-C sample. 
The twin boundary in the middle (marked with an orange dashed line) divides the core into two semi 
spheres. (b) shows the colored twinned (111) planes in the upper (green) and bottom (red) 
hemispheres in the frequency filtered map of (a). (c) AC HAADF-STEM image of one of the Au 
nanoparticles with a magnified detail and its corresponding indexed power spectrum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b c
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Figure S11. HAADF STEM image of Ni-N-O-C and representative EDS chemical composition 
maps. 
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Figure S12. (a) Low magnification and (b) high magnification aberration-corrected HAADF STEM 
images of Au0.5/N-O-C sample, (c) HAADF STEM image and representative EDS chemical 
compositions of Au0.5/N-O-C sample. 
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Figure S13. High-resolution XPS O 1s of (a) N-O-C and (b) Ni-N-O-C. 
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Figure S14. High-resolution XPS N 1s of (a) N-O-C and (b) Ni-N-O-C. 
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Figure S15. High-resolution XPS C 1s of (a) N-O-C, (b) Ni-N-O-C and (c) Au0.5/Ni-N-O-C. 
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Figure S16. High-resolution XPS Ni 2p of (a) Ni-N-O-C and (b) Au0.5/Ni-N-O-C. 
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Figure S17. High-resolution XPS Au 4f spectrum of Au0.5/N-O-C. 
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Figure S18. WT-EXAFS images of (a) Ni foil and (b) NiO. 
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Figure S19. LSV curves vs. RHE of (a) N-O-C, (b) Ni-N-O-C, (c) Au0.5/N-O-C and (d) Au0.5/Ni-
N-O-C obtained in Ar- or CO2-saturated 0.5 M KHCO3 solution. 
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Figure S20. The representative 1H-NMR spectra of the electrolyte after electrolysis of −0.50 V vs. 
RHE for Au0.5/Ni-N-O-C in CO2-saturated 0.5 M KHCO3 electrolyte for 30 h. 
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Figure S21. Total current density for different catalysts. 
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Figure S22. (a) FE of CO and H2 at various potentials, (b) current density for CO and H2 on N-O-
C. 
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Figure S23. TOF value of Ni-N-O-C and Au0.5/Ni-N-O-C. 
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Figure S24. (a) FE of CO and (b) FE of H2 at various potentials on Au0.5/Ni-N-O-C and Au0.5/Ni-
N-O-C-physical mixture samples. 
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Figure S25. (a) Faradaic efficiency of H2 and (b) current density for H2 production on Ni-N-O-C, 
Au0.5/N-O-C and Au0.5/Ni-N-O-C samples. 
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Figure S26. (a) XRD patterns and High-resolution XPS Ni 2p of Au0.5/Ni-N-O-C and Au0.5/Ni-N-
O-C after stability test. 
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Figure S27. Cyclic voltammograms curves for (a) N-O-C, (b) Ni-N-O-C, (c) Au0.5/N-O-C, (d) 
Au0.5/Ni-N-O-C. (e) Plots of the current density vs. scan rate for N-O-C, Ni-N-O-C, Au0.5/N-O-C 
and Au0.5/Ni-N-O-C electrodes. (f) Electrochemical impedance spectroscopy (EIS) of N-O-C, Ni-
N-O-C, Au0.5/N-O-C and Au0.5/Ni-N-O-C electrodes. 
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Figure S28. FE of (a) CO and (b) H2 at various potentials, current density for (c) CO and (d) H2 
production on Aux/Ni-N-O-C samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

-0.4 -0.5 -0.6 -0.7 -0.8 -0.9
0

20

40

60

80

100

Fa
ra

da
ic

 E
ffi

ci
en

cy
 o

f C
O

 (%
)

Potential (V vs. RHE)

 Au0.25/Ni-N-O-C
 Au0.5/Ni-N-O-C
 Au0.75/Ni-N-O-C

-0.4 -0.5 -0.6 -0.7 -0.8 -0.9
0

20

40

60

80

100

Fa
ra

da
ic

 E
ffi

ci
en

cy
 o

f H
2 (

%
)

Potential (V vs. RHE)

 Au0.25/Ni-N-O-C
 Au0.5/Ni-N-O-C
 Au0.75/Ni-N-O-C

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4
-10

-8

-6

-4

-2

0

C
ur

re
nt

 d
en

si
ty

 o
f H

2 (
m

A 
cm

−2
)

Potential (V vs. RHE)

 Au0.25/Ni-N-O-C
 Au0.5/Ni-N-O-C
 Au0.75/Ni-N-O-C

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4

-20

-15

-10

-5

0

C
ur

re
nt

 d
en

si
ty

 o
f C

O
 (m

A 
cm

−2
)

Potential (V vs. RHE)

 Au0.25/Ni-N-O-C
 Au0.5/Ni-N-O-C
 Au0.75/Ni-N-O-C

a b

c d



41 
 

 
Figure S29. The top view of optimized adsorption configuration on simulated models (Ni, O, N, C 
and Au atoms are represented in purple, red, blue, grey and gold, respectively).  
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Figure S30. Supposed pathway of CO2 reduction to CO in DFT calculations. 
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Figure S31. Free energy profiles for the eCO2RR to CO on simulated models. 
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Figure S32. Potential ranges and overpotential of Au0.5/Ni-N-O-C (orange) catalyst compared with 
the state-of-the-art CO2-to-CO conversion on Ni (green) or Au (blue)-based catalysts. 
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Table S1. Ni and Au loading ratios of different samples. 

Samples Final product ratio (Ni) Final product ratio (Au) 

Ni-N-O-C 0.18 wt% / 
Au0.5/Ni-N-O-C 0.20 wt% 0.38 wt% 
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Table S2. EXAFS fitting parameters at the Ni K-edge for Ni-N-O-C 

Sample Shell N a R (Å) b σ2 (Å2·10-3) c ΔE0 (eV) d R factor (%) 

Ni-N-O-C 
Ni-N 2.9 1.87 5.7 

6.5 0.4 
Ni-O 1.2 2.12 8.4 

a N: coordination numbers; b R: bond distance; c σ2: Debye-Waller factors; d ΔE0: the inner potential 
correction. R factor: goodness of fit. Ѕ02 were set as 0.85/0.80 for Ru-N/O, Ru-Ru, which was 
obtained from the experimental EXAFS fit of reference NiPc by fixing CN as the known 
crystallographic value and was fixed to all the samples.    
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Table 3. Faradaic Efficiency (CO) of the reported Ni or Au-based catalysts for CO2 
electroreduction.  

Catalysts Overpotential @ 
FECO > 90% / mV 

Potential range (FECO > 
95%) 

Reference 

NiNx  490 −0.60 to −0.84 V vs. RHE [S4] 

NiC4/NiNC2 590 / [S15] 

NiN4 390 / [S16] 

NiN2  490 −0.65 to −0.75 V vs. RHE [S17] 

NiN4-Ssubstrate 390 −0.50 to −0.60 V vs. RHE [S18] 

NiN3  690 −0.90 to −1.10 V vs. RHE [S19] 

NiN4  490 / [S20] 

NiN4  590 / [S21] 

NiN4Oaxial  460 −0.67 to −0.87 V vs. RHE [S22] 

NiN4Oaxial  450 / [S23] 

NiN4Bsubstrate  490 −0.60 to −1.10 V vs. RHE [S24] 

NiN4 490 / [S25] 

NiN3 690 −0.80 to −0.90 V vs. RHE [S26] 

NiN4 490 −0.75 to −0.90 V vs. RHE [S27] 

NiN4 390 −0.65 to −0.70 V vs. RHE [S28] 

NiN4 590 −0.70 to −1.10 V vs. RHE [S29] 

NiN4 520 / [S30] 

NiN2C2 590 / [S31] 

NiN4 390 −0.60 to −0.90 V vs. RHE [S32] 

NiN3S 590 / [S33] 

NiN3B 540 −0.65 to −1.05 V vs. RHE [S34] 

NiN2 490 −0.70 to −0.90 V vs. RHE [S35] 

NiN3S 420 −0.63 to −0.83 V vs. RHE [S36] 

Ni/Fe-N-C 590 / [S37] 

Ni/Fe-N-C 290 / [S38] 

Ni/Fe-N-C 290 −0.50 to −0.55 V vs. RHE [S39] 

Ni/Cu-N-C 590 −1.00 to −1.20 V vs. RHE [S40] 

Ni/In-N-C 390 / [S41] 

Ni/Ni-N-C 690 −0.80 to −1.00 V vs. RHE [S42] 

Ni-N-C 540 / [S43] 

Ni-N-C 690 / [S44] 

Au needles 240 −0.35 to −0.50 V vs. RHE [S45] 

Au particles 390 −0.50 to −0.70 V vs. RHE [S46] 

Au0.5/NiN3O 340 −0.50 V to –0.85 V vs. RHE This work 
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Table S4. Thermodynamic free energy corrections (in eV) for gas molecules. 

Species EZPE (eV) ∫CpdT (eV) TS (eV) 

CO(g) 0.13 0.09 0.61 

CO2(g) 0.31 0.10 0.66 

H2(g) 0.27 0.09 0.40 

H2O(g=l) 0.57 0.10 0.67 
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Table S5. Thermodynamic free energy corrections (in eV) for adsorbates. 

Models Adsorbates EZPE (eV) ∫CpdT (eV) TS (eV) 

Ni-N-O-C 
COOH* 0.60 0.11 0.26 

CO* 0.19 0.05 0.12 

Au Cluster 
COOH* 0.63 0.10 0.19 

CO* 0.14 0.07 0.18 

Au/Ni-N-O-C 
COOH* 0.62 0.11 0.23 

CO* 0.19 0.08 0.19 

Au(111) 
COOH* 0.61 0.09 0.19 

CO* 0.18 0.08 0.15 
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