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Abstract
We investigate how data acquisition rate affects the decoherence of diffraction speckles in fluctuation electron microscopy (FEM) experiments on 
amorphous silicon at 80 kV. Surprisingly, reducing acquisition time from 256 ms to 1 ms does not significantly enhance the intensity variance 
peaks related to medium-range order. This suggests that decoherence processes operate at timescales faster than 1 ms. At the highest 
acquisition rates, noise complicates the variance background estimation. A significant source of non-Poisson noise is the spread of electron 
signals across adjacent detector pixels. We mostly restore the discrete pulse counting needed to mitigate Poisson noise by rounding pixel 
intensity to the nearest integer-electron value. However, a residual negative-variance offset grows as the acquisition rate increases. Efficient 
electron pulse counting in detectors is crucial for processing Poisson noise in FEM, especially with weak signals.
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Introduction
Fluctuation electron microscopy (FEM) is a transmission elec-
tron microscopy (TEM) method that examines statistical var-
iations in diffraction from small regions of thin amorphous 
materials to reveal medium-range order (MRO). Unlike crys-
tals, which diffract steady Bragg beams, amorphous materials 
give a dispersed speckled diffraction that changes between 
regions. Analyzing speckle intensity variance into scattering 
vectors k = (kx, ky) across multiple regions can reveal MRO, 
even if the average diffraction pattern appears “diffraction 
amorphous” (Treacy & Gibson, 1996; Treacy et al., 1998).

The atomic length scale for MRO typically ranges from 1 to 
3 nm, while longer-range order manifests as sharper diffraction 
rings or spots with crystallographic hkl indices (Treacy et al., 
2005). The speckle variance from MRO is strongest when the 
sampled-volume width, controlled by microscope resolution, 
is comparable to the characteristic MRO length scale (Treacy 
& Gibson, 2012). Being a low-resolution technique, FEM is 
not signikcantly affected by depth-of-focus issues for typical 
sample thicknesses. Since FEM examines diffraction intensity 
as a function of probed location, I(x, y; kx, ky), it is an early ex-
ample of 4D Microscopy (Nellist et al., 1995; Ophus, 2019).

FEM is not a quantitative technique like Rietveld reknement 
or pair-distribution function (PDF) analysis in X-ray diffrac-
tion. A key challenge is that experimental variance measure-
ments are much weaker than kinematical scattering 
predictions. Theory and simulations with coherent illumin-
ation indicate that the intensity histogram of scattering into 

vector k from a disordered sample follows a negative exponen-
tial probability distribution:

P(I) = 1
→I↑ exp − I

→I↑

􏼡 􏼢
. (1) 

→I↑ is the mean intensity, and the normalized variance, ob-
tained by dividing the variance by →I↑2, equals 1.0. When 
MRO is introduced into models, broad normalized variance 
peaks emerge above this background as a function of k 
(Treacy & Gibson, 1998; Rezikyan et al., 2015). However, ex-
perimental FEM data typically yield background-normalized 
variance values of 0.001 to 0.05, a signikcant discrepancy. 
Deceptively, experimental diffraction data from thin amorph-
ous materials seem to be well modeled by kinematical scatter-
ing: quantitative pair-distribution details can be extracted, 
elucidating the short-range order (SRO) (Cockayne & 
McKenzie, 1988; Cockayne, 2007). PDF measurements are 
relatively insensitive to decoherence effects because large vol-
umes are probed and the absolute position in space relative to 
the incident beam position (phase) is unimportant as long as 
no rotations occur during exposure. For amorphous materials, 
rotations can be quite large without much effect on the 
short-range interference. Even small wavelength shifts are 
unimportant. Additionally, the beam ,uences are many orders 
of magnitude smaller because of macroscopic averaging in 
diffraction. In FEM, small volumes are examined and the 
absolute position relative to the probe becomes more import-
ant, thus small displacements can have a signikcant effect. 
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Combinatorially, there are many more degrees of freedom af-
fecting the 4-body (pair–pair) interactions that dominate the 
FEM signal than there are for the 2-body (pair) interactions in 
the PDF. Consequently, FEM exhibits enhanced sensitivity to 
incoherence and decoherence effects (Treacy & Gibson, 1998).

Monte Carlo methods, which match mean diffraction and 
normalized variance data by adjusting model atom locations, 
have had success when a multiplicative parameter is intro-
duced to emulate the variance suppression phenomenological-
ly (Borisenko et al., 2012; Kalay et al., 2012; Treacy & 
Borisenko, 2012; Maldonis et al., 2017). Despite the difkcul-
ties matching experimental variance peak amplitudes, the 
peak locations tend to match those in simulations from well- 
characterized models.

As outlined above, illumination spatial incoherence reduces 
speckle variance, especially in the background. Each incident 
electron has an extensive oscillatory coherence volume whose 
phase gradients are not necessarily aligned with those of other 
incident electrons. The relative scattering phase, 2πΔk · rij, 
when atoms i and j are far apart, can vary signikcantly with 
small changes, Δk, in the incident wavevector. The time- 
averaged coherence volume, within which the relative scatter-
ing phase does not vary by more than about π/2, contracts to 
the immediate neighborhood, {rij}, of each atom i, elongated 
along the beam direction (Gibson & Howie, 1979; Treacy 
& Gibson, 1996; Treacy et al., 2005).

In early FEM experiments, spatial coherence was treated as 
an adjustable parameter. Hollow-cone dark-keld imaging 
(HCFEM) in a TEM analyzed image speckle intensity variance 
as a function of the hollow-cone tilt vector, which controls the 
coherence volume (Treacy & Gibson, 1996). Background 
variance from uncorrelated atoms was strongly suppressed, 
highlighting local MRO contributions, and this initially 
masked the numerical discrepancy between theory and experi-
ment for coherent illumination.

Later, the intensity histogram of amorphous carbon was an-
alyzed using tilted dark-keld FEM in a TEM (TDFEM) 
(Treacy, 2012; Rezikyan et al., 2015). Intensity histograms 
kt a Gamma distribution (Treacy, 2012; Rezikyan et al., 
2015), as predicted for partially coherent illumination 
(Dainty, 1975; Goodman, 1975a, 1975b), represented by:

P(I) = mm

Γ(m)
Im−1

→I↑m exp − mI
→I↑

􏼡 􏼢
. (2) 

The parameter m ≥ 1 governs the distribution’s prokle, which 
can be derived as an (m − 1)-fold convolution of negative ex-
ponentials, with Γ(m) = (m − 1)! for integer m. It was sug-
gested that m measures the number of incoherent sources in 
the illumination (Treacy & Gibson, 1998). The Gamma distri-
bution has a normalized variance of 1/m, with m = 1 corre-
sponding to full spatial coherence. Surprisingly, high values 
of m ≈ 35 were found, seemingly inconsistent with the high 
coherence suggested by the bright-keld Fresnel fringes.

In scanning transmission electron microscope (STFEM) ex-
periments, illumination coherence was estimated by comparing 
focused-probe images with the Airy disk. Zjajo et al. (2021)
found a range 1.5 ≤ m ≤ 23, with higher m values linked to lar-
ger condenser spot sizes, which provide higher beam current 
and lower shot noise but much-reduced coherence.

The origins of background variance suppression have been 
explored using STFEM (Rezikyan et al., 2015; Radić et al., 

2019, 2022). Rezikyan et al. (2015) proposed that signal deco-
herence occurs during scattering and data collection, possibly 
from rapidly ,uctuating phase shifts in scattered electron 
waves. Fluctuations in phase 2πk · rij can arise from rapid 
changes to the irradiated atom positions Δ{rij} (displacement 
decoherence) in addition to the variations Δk in the incoming 
beam (illumination spatial incoherence). Signikcant atomic 
movement during acquisition averages kne-scale details, redu-
cing variance. Simulations indicate that phonons are not a sig-
nikcant issue and suggest that random atomic vibrations with 
a root-mean-square amplitude of 1.5 Å reproduce key experi-
mental features. However, such large displacements are ques-
tionable in lightly beam-damaged samples. More likely 
mechanisms include bulk motions like specimen drift, klm vi-
brations, phase changes, and material rotations. Other con-
tributors may include sample charging variations, aperture 
charging modes (objective apertures are smaller in FEM), in-
elastic scattering, and multiple scattering.

Decoherence mimics spatial incoherence by conforming to 
Gamma-distribution intensity statistics (Rezikyan et al., 
2015). This suggests an adherence volume around each scatter-
er, similar to the coherence volume, wherein scattering remains 
sufkciently mutually coherent throughout the diffraction pat-
tern acquisition time. We expect the adherence volume to 
shrink with increasing acquisition time if the sample changes 
continuously under the beam.

Lower beam ,uence in the probed volume can reduce speci-
men damage and ,uctuations from sample charging from sec-
ondary electron emission (Jiang, 2015, 2016, 2023). Rezikyan 
et al. (2015) suggested faster diffraction acquisition times may 
lessen decoherence effects, particularly from slower motions 
like drift. However, reduced ,uence increases variance from 
Poisson shot noise, which competes with the structural vari-
ance being studied.

High frame-rate direct electron detection cameras, with 
high detective quantum efkciencies (DQE near 1.0) and excel-
lent modulation transfer function (MTF) characteristics, en-
able the exploration of decoherence in FEM at faster sample 
perturbation frequencies.

This report examines how fast exposure times, down to 1  
ms with an 80 kV beam on an electron microscope pixel array 
detector (EMPAD), affect the normalized variance of amorph-
ous silicon thin klms. An unexpected complication of this 
study was non-Poisson noise on the EMPAD.

Experimental Details
Data were collected on the FEI Titan G2 80–200 ChemiSTEM, 
a probe-corrected analytic scanning transmission electron 
microscope (STEM). The X-FEG source brightness was 
7.5 × 107 A m−2 sr−1 V. The beam voltage was 80 kV, below 
the knock-on damage threshold for crystalline silicon. The 
probe size (resolution) was ∼ 1.1 nm using gun lens setting 8, 
objective aperture diameter 50 μm, and spot size 11.

The instrument features an EMPAD with a 128 × 128 pixel 
array, each pixel measuring 150 μm × 150 μm and 500 μm 
thickness (Tate et al., 2016). It has a dynamic range of 30 
bits and registers 151 analog-to-digital units (ADU) per inci-
dent electron at low ,uence, with a baseline noise of 2.8 
ADU. The maximum frame rate is 1.1 kHz with a readout 
time per frame of 0.86 ms. The shortest acquisition time we 
used was 1 ms. The detective quantum efkciency (DQE) is 
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0.88 at approximately 0.2 electrons/pixel/frame and is esti-
mated to reach 0.93 at around 700 electrons/pixel/frame at 
80 kV.

There was no Faraday cup to measure current. The ,uence 
rate was evaluated to be 1.06 ± 0.21 × 107 electrons/nm2/s, 
about 1.1 pA, using the EMPAD diffraction patterns cor-
rected for estimated scattering beyond the collection solid 
angle.

The diffraction camera length was 0.28 m, conkrmed by dif-
fraction from gold particles on a thin carbon klm. With the un-
scattered beam centered at pixel (64,64), the scattering range 
is −8.1 ≲ kx, ky ≲ 8.1 nm−1, each pixel subtending Δk of 
0.126 nm−1/pixel.

In a previous report (Zjajo et al., 2021), the illumination 
spatial coherence was estimated by comparing the probe in-
tensity prokle to an ideal Airy disk, yielding m ∼ 1.5. 
Ideally, the normalized variance baseline value is expected to 
be 1/m ≈ 2/3 for a random structure.

We examined three amorphous silicon specimens with 
thicknesses of 5, 9, and 15 nm from SPI, Inc. (catalog numbers 
US100-A05Q33A, US100-A09Q33, US100-A15Q33, lot# 
1270927). They were produced via a proprietary sputtering 
process on crystalline silicon wafers, which were then etched 
to create freestanding membranes. The klms have a uniform 
thickness (less than 0.3 nm r.m.s. surface roughness) and a 
thin oxide layer on both surfaces. Details about gases and 
pressures are proprietary. Diffraction and FEM data suggest 
the oxide layer is the minority phase, even in the 5-nm 
samples.

Five experiments were conducted with 256, 64, 16, 4, and 1  
ms frame acquisition times for each klm thickness. To keep a 
constant total signal, the acquisition times, τ, and the number 
of diffraction patterns, N, were adjusted to satisfy

N × τ = 65,536 patterns.ms. (3) 

Accordingly, patterns were acquired from square scan arrays 
ranging from N = 16 × 16 to 256 × 256 patterns—the sam-
pling size increasing as acquisition time decreases. Freshly 
scanned areas were 2.6–2.9 μm across, ensuring that probed 
regions were more than 10 nm apart. For the 5-nm thick 
amorphous Si klms, approximately 4.5 × 108 electrons were 
collected in each experiment. A 1-ms exposure yielded about 
6,900 electron counts per pattern, 85% of which fall inside 
k ≤ 1 nm−1, in and around the central beam.

Modeling and Analysis
Data processing and modeling were conducted using our C co-
des. The intensity was tracked by dekning a region of interest 
(ROI) in diffraction patterns with ImageJ (Schneider et al., 
2012). Annular ROIs, centered on the diffraction origin, 
monitored intensity in diffraction rings. The total intensity 
and Pearson r factor (Press et al., 1992) for pixels within the 
ROI were analyzed across frames to assess linear correlations 
between successive diffraction patterns from the same sample 
region. When correlated, r = ±1. Loss of correlation (r ↓ 0) 
indicates decoherence between successive diffraction patterns.

When rastering the probe, diffraction patterns were some-
times shifted by up to three EMPAD pixels, presumably be-
cause of tilt-purity misalignments. Conceivably, charge 
build-up on the sample during the scan might be de,ecting 
the incident beam. Our code compensated by shifting patterns 
back to the origin to the nearest half-pixel.

The variation in intensity at scattering vector (kx, ky) is 
measured by the normalized variance, dekned as:

nVar(kx, ky) = N
N − 1

􏼡 􏼢
→I2(kx, ky)↑N
→I(kx, ky)↑2N

− 1

􏼣 􏼤

. (4) 

→ ↑N represents the average over all probe positions (xn, yn) for 
n = 1 to N. →I(kx, ky)↑N is the mean intensity, while 
→I2(kx, ky)↑N is the mean of the squared intensity. The prefac-
tor N/(N − 1) arises because, strictly, the variance computa-
tion has only N − 1 independent degrees of freedom—there 
is no variance when N = 1. When N is large, this scaling factor 
tends to 1.0 and is usually ignored. However, it may be im-
portant to include it when correcting for noise, as discussed 
later. Normalization by →I(kx, ky)↑2N compensates for the de-

crease in electron scattering factor as k =
􏼥􏼥􏼥􏼥􏼥􏼥􏼥􏼥􏼥
k2

x + k2
y

􏼦
increases. 

We refer to this as “nVar,” “nVarNC” (noise corrected), or 
simply “the variance” when the context is clear. nVar(kx, ky) 
provides a 2D normalized variance map. In simulations, a dis-
ordered sample shows a uniform variance across scattering vec-
tors, and MRO introduces additional peaks or rings.

Diffraction simulations were based on kinematical scatter-
ing from stationary atoms using a 4,096-atom silicon continu-
ous random network (CRN) with a cubic unit cell edge of 
4.524 nm (Wooten et al., 1985). A single cell was randomly 
oriented over 4π steradians, and the probe was randomly dis-
placed laterally to avoid oversampling of the model’s center. 
Diffraction for each orientation was calculated on a 1,024 × 
1,024 grid out to ±13 nm−1, centered at (512, 512). The probe 
was modeled using a Gaussian intensity prokle with a stand-
ard deviation of 0.378 nm, equivalent to a resolution of 1  
nm per the Rayleigh resolution criterion, where the intensity 
dip between resolved points is 8/π2 of the peak intensity 
(Born & Wolf, 2013). Diffraction-limited Airy-disk prokles 
yielded similar results but were computationally slower.

We generate radially averaged plots by a method similar, 
but not formally identical, to Daulton’s method 4, the “annu-
lar mean of variance image” (Daulton et al., 2010). P copies of 
each of the N diffraction patterns are made and rotated about 
the origin by an angle 2π(p − 1)/P, p = 1, . . . P. Bilinear inter-
polation was used to determine pixel intensities in the rotated 
patterns. For the EMPAD, P = 400 is sufkcient. Each rotated 
copy is treated as a valid distinct diffraction pattern, and the 
variance map of the enlarged ensemble of N × P patterns is 
computed. P was adjusted so the resultant variance map has 
azimuthally smooth rings. The trace nVar(k, 0) is taken to re-
present the azimuthally averaged variance, nVar(k). Aliasing 
near the origin, with the fewest pixels per annular ring, intro-
duces small spurious variance features. Variance around the 
origin is low and not usually of structural interest. Our 
nVar(k) plots are restricted to the inscribed circle of the square 
pixel array centered at the diffraction origin, and data in pat-
tern corners are ignored.

When the signal is weak, shot and detector noise dominate 
variance. Shot noise follows a Poisson distribution and was 
apportioned randomly as discrete counts using the method 
of Gibson & Treacy (2008). The probability of a discrete 
measure q (for example, the number of electrons collected in 
a pixel over some time interval) with mean →q↑ is:

P(q, →q↑) = →q↑q

q!
e−→q↑. (5) 
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The variance equals →q↑. Thus, the normalized variance is 
1/→q↑. For a perfect detector, the normalized variance can be 
corrected for the Poisson-noise background:

nVarNC(kx, ky) = N
N − 1

􏼡 􏼢
→I2(kx, ky)↑N
→I(kx, ky)↑2N

− 1

􏼣 􏼤

− 1
→I(kx, ky)↑N

.

(6) 

Intensity must be recorded as discrete electron counts. 
N/(N − 1)  The EMPAD does not count pulses, and scaling 
intensity by Ie = 151 ADU units/electron (at 80 kV) leads to 
fractional counts, and the noise correction fails for weak signals 
(I ≲ 10). Using the nearest-integer value I = nint(IADU/Ie) sta-
bilizes the noise correction, allowing interpretation of vari-
ance peak heights relative to the background.

Understanding electron detectors’ noise and response char-
acteristics is crucial for quantitative electron microscopy 
(Ruskin et al., 2013; Lee et al., 2014; Tate et al., 2016; 
Levin, 2021; Kodama et al., 2022). Equation (6) has no adjust-
ment for the detective quantum efkciency (DQE < 1) as noise 
cannot be further randomized. It corrects the formula from 
Treacy et al. (2005), who proposed a noise correction term 
−DQE/→I(kx, ky)↑N, which works deceptively well for nondis-
cretized experimental data with moderate noise levels. This is-
sue of noise discretization is important and is examined in the 
Results and Discussion.

Results
EMPAD Noise Characteristics
Figure 1 plots the time evolution of diffraction intensity from a 
5-nm thick amorphous silicon sample into two 8 × 8 pixel 
regions of reciprocal space—indicated by the inset red and 
blue squares. We collected 25,000 patterns over 46.5 s, 
allowing for the 0.86 ms readout time. The electron ,ux into 

each region is presented as IADU/Ie electron counts. In add-
ition to high-frequency shot noise, both regions show intensity 
variations at timescales of 1–3 s, potentially from specimen 
drift, tilts, structural rearrangements, or sample charging. 
The average counts scattered from the central beam remain es-
sentially constant, indicating no signikcant loss of Si or carbon 
contamination buildup.

Figure 2a shows the IADU/Ie electron counts from the green 
8 × 8-pixel ROI in Figure 1, centered around k ≈ 2 nm−1, se-
lected for its weak structural speckle. The intensity histogram 
in Figure 2b (green circles) is ktted to a Gaussian (blue curve). 
For a Poisson distribution to approximate a Gaussian, the 
mean should be →q↑ ≳ 10. The mean is 17.3 electron counts 
with a standard deviation of 4.7. A Poisson distribution 
with this mean has a standard deviation of 

􏼥􏼥􏼥􏼥􏼥􏼥
17.3

↔
≈ 4.2 (red 

curve). The good agreement indicates that most intensity vari-
ation in the green ROI is from Poisson noise, with a contribu-
tion from longer timescale variations.

Figure 3 shows the low-intensity end of the diffraction- 
pattern intensity histograms, recorded from 27,000 1-ms dif-
fraction patterns from the 5-nm thick amorphous Si sample. 
The last 2,000 frames have the incident beam blanked. The 
horizontal bands indicate statistical detection of 0- to 4-elec-
tron arrival events, with the right plot displaying the accumu-
lated histogram of the krst 25,000 patterns. The peak at zero 
electron counts is pronounced. The 1-electron peak is less 
sharp, and higher-count peaks are increasingly broadened 
with no discernible peak for kve electrons. Notably, there 
is signikcant intensity for nondiscrete electron counts, and 
the rate for a “1/2 an electron” event is about half that for 
“1 electron.” The horizontal red lines indicate the ideal detec-
tor’s response.

The broadened histogram peaks can be partly explained by 
examining individual pixels in 1-ms diffraction patterns away 
from the central beam. Figure 4 shows six enlarged EMPAD pix-
el patches from a diffraction pattern near k ∼ 6.5 ± 0.5 nm−1 

Fig. 1. Plots of diffracted intensity as a function of time accumulated into two 8 × 8-pixel diffraction windows. Data are from 25,000 1-ms-exposure 
diffraction patterns acquired from a fixed location in a 5-nm thick amorphous Si sample. The red and blue plots are from the red and blue regions of 
interest indicated in the inset averaged pattern. The unscattered central disk is outlined in light blue. Results from the green region are presented in 
Figure 2.
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where scattering is weak. Ideally, detected electrons appear as 
single bright pixels such as Figure 4a with a signal of IADU = 
153 ADU for 1.01 electrons. Figure 4b illustrates a single elec-
tron event spread across two pixels summing to 0.96 electron 
units, while Figure 4c represents an event spread over three pix-
els totaling 1.2 electrons. Most single-electron events kt these 
scenarios, contributing to the noninteger spread in Figure 3.

Quantizing pixel intensity to the nearest integer value, 
nint(I/Ie), is effective for single-electron events, such as those 
in Figures 4a–4c. However, it can misidentify the incident pix-
el. Examples of failure are shown in Figures 4d–4f. In 
Figure 4d, a total signal of 1.96 suggests two electrons, but 
nint registers only one at pixel 0.70. Figure 4e shows a single- 
electron event spread over four pixels, yet nint reports zero. 
Figure 4f indicates a likely 2-electron event, but only one is re-
corded at pixel 1.36.

The nint threshold does not conserve the total signal; at 80  
kV, it results in a signal loss of −4.4% compared to the raw 
sum. We explored noise corrections of the form −Q/→I↑, aim-
ing for Q ≈ 0.956, but deviations from Q = 1 led to unstable 
corrections at higher k.

Electron Correlation Microscopy
The longer timescale intensity ,uctuations in Figures 1 and 2
were investigated using electron correlation microscopy 
(ECM). Figure 5 presents results from 4-ms diffraction pat-
terns from a 9-nm thick amorphous Si sample, averaging kve 
experimental runs from different areas. Because of shot noise, 
the Pearson r factor starts at 0.29 and decays to 0.18. The 1-ms 
diffraction data on the 5-nm sample was too noisy to analyze, 
with r ≈ 0.04.

Several mechanisms can cause correlation loss between dif-
fraction patterns: specimen drift, accumulated beam damage, 
thermodynamical changes, contamination, and changes in 
charge distributions. Vaerst et al. (2023) studied the role of 
beam effects on long-timescale atom dynamics in metallic 
glasses, where drift is a concern. Our broad annular ROI 
over diffraction k-space averages over a range of dynamics 
(Huang & Voyles, 2024). Nevertheless, we ktted the correl-
ation decay to a single exponential-decay function, 
r = r0 + A exp ( − t/T), knding r0 = 0.184, A = 0.113, and 
time constant T = 272 ms, slightly longer than our longest ac-
quisition time of 256 ms. r0 indicates the residual correlation 

(a)

(b)

Fig. 2. (a) Plot of the total intensity accumulated in the green 8 × 8-pixel window shown in Figure 1. The data from the first 200 1-ms frames are displayed. 
The dashed lines connect successive data points. (b) The intensity histogram (green points) from the full set of 25,000 patterns. The histogram is fitted to a 
Gaussian (blue curve). The narrower red curve is the Gaussian expected at this mean intensity for a perfect detector.
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among unrelated diffraction patterns with the same electron 
scattering factor prokle.

Fluctuation Electron Microscopy
Figure 6 summarizes experimental FEM data for the 5-nm 
amorphous Si klm across kve exposure times: τ = 256, 64, 
16, 4, and 1 ms, with similar data for 9-nm and 15-nm sam-
ples. Recall that the number of diffraction patterns N was 
set to ensure Nτ = 65,536, maintaining a consistent total sig-
nal for each dataset.

The left column shows individual diffraction patterns. In 
the 256-ms data (top left), diffraction speckles from the 

amorphous Si structure are visible, with speckle width corre-
sponding to the diameter of the central diffraction disk, about 
1.22/(1.1 nm) = 1.1 nm−1 (nine pixels). In the 1-ms pattern 
(bottom left), the structural speckles are indiscernible to the 
eye against the noise.

The mean diffraction patterns in the second column are essen-
tially identical. The normalized variance maps, nVar(kx, ky) in 
the third column, show signikcant noise variance at higher k val-
ues in the edges and corners. The two characteristic variance 
rings of amorphous Si are visible in the 256-ms data, while the 
maps for τ ≤ 64 ms show a single bright ring where we expect 
a dip between those two rings. This contrast reversal is because 

Fig. 3. Left: The low-intensity end of the intensity histograms of the 1-ms diffraction data from 5-nm thickness amorphous Si, displayed along the vertical 
axis as electron counts, as a function of the frame number (horizontal axis). The time scale is the same as for Figure 1. Horizontal bands appear at 0, 1, 2, 3, 
and 4 electron counts. The 2,000 points at the end of the run are for the blanked beam. Right: the averaged intensity histogram for the first 25,000 
patterns. The horizontal red lines indicate the idealized delta-function response of the perfect detector.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of single- and double-electron capture events on the EMPAD. The nominal, nondiscrete number of electrons collected by each pixel is 
indicated. (a) A single-electron event, confined mostly to one pixel. (b) A single-electron event spread over two pixels. The nearest-integer threshold, 
nint, will register one electron for 0.59. (c) A one-electron event. nint registers 1 electron at 0.64. (d) Two electron events, but nint registers only one 
electron at 0.70. (e) The total signal is 1.0, a likely single electron event, but nint registers zero. (f) There are two electron events, but nint registers only 
one electron at 1.36.
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Fig. 5. Pearson r correlation analysis of the 4-ms data from 9-nm thickness amorphous Si (red points), averaged over five separate runs. The shading 
represents the spread of those runs. The Pearson r immediately drops from 1.0 to r ≈ 0.29 because of strong Poisson noise. The blue line is a fit to an 
offset negative exponential, indicating a decay-time coefficient T = 272 ms. The noise baseline at large times is r0 = 0.184.

Fig. 6. Summary of experimental diffraction data acquired for 5-nm thickness amorphous Si. Data for the five exposure times are presented in the rows, 
top to bottom, τ = 256, 64, 16, 4, and 1 ms. The left column presents a typical diffraction pattern from each series. The second column presents the mean 
diffraction patterns. The third column presents the normalized variance maps. The fourth column displays the noise-corrected normalized variance maps 
using nint thresholding. Values in the range 0 ≤ nVarNC ≤ 0.3 are displayed.
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of Poisson noise variance, which is large where →I(kx, ky)↑N is 
weak (i.e. in the dip). The nint-thresholded variance maps, 
nVarNC(kx, ky) in the fourth column, remove much of the 
shot-noise variance and restore the two characteristic a-Si vari-
ance rings at k ≈ 3.2 and 5.7 nm−1. A sharp variance feature at 
the rim of the central disk near k ≈ 0.55 nm−1 arises from the 
half-pixel precision in the pattern-shift correction of the tilt- 
purity misalignment.

The nVarNC maps present a visual intensity scale ranging 
from 0 (black) to 0.3 and above (white). A slight negative off-
set increases as exposure time decreases, causing parts of the 
variance map to “submerge” at shorter exposures, with the 
tops of the two rings visible as “islands.” The amplitude of 
the nVarNC rings, compared to the dip between them, is con-
sistent across all kve experiments.

Figure 7 presents radial plots of results for the three 
amorphous Si thicknesses. Data from three experimental 
runs for each thickness and exposure time are shown, with 
overlapping plots indicating reproducibility. The data were 
processed as nint(I/Ie). The top row represents 5-nm a-Si, 
the middle for 9-nm a-Si, and the bottom for 15-nm a-Si. 
Mean diffraction prokles, →I(k)↑, are in the left column on a 
logarithmic scale. Notwithstanding the fourfold increments in 
exposure times, the mean diffraction prokles for each thickness 
are identical. Two diffraction peaks near 3.2 and 5.7 nm−1 ap-
pear in all mean plots but are less distinct in the 5-nm data, pos-
sibly because of the thin oxide layers: the 5-nm klm would have 
the lowest silicon/silica ratio if the oxide thickness is consistent.

The center column shows the nint-thresholded variances, 
nVar. nVar increases rapidly with increasing k where noise 
dominates the variance. nVar is highest for the thinnest sam-
ples, reaching nVar ≈ 100 for k ≥ 7.5 nm−1, where the 
signal-to-noise ratio is lowest.

The third column displays the Poisson-corrected variance 
(nVarNC, nint-thresholded). The negative offset is observed 
across all thicknesses, reaching values as low as −0.11 for the 
1-ms data. This indicates that acquisition time rather than sig-
nal strength in,uences the offset despite the 15-nm klm scat-
tering three times more strongly than the 5-nm klm.

Discussion
Negative Variance
Negative variance is physically meaningless and arises here be-
cause our correction procedure, equation (6), overcompen-
sates for noise. A detailed derivation conkrms that this 
equation is valid for a detector with DQE < 1, given discrete 
signals. To suppress runaway negative variance, it was pro-
posed that the noise correction should be (Treacy et al., 2005):

nVarNC(kx, ky) = →I2(kx, ky)↑N
→I(kx, ky)↑2N

− 1 − Q
→I(kx, ky)↑N

. (7) 

This assumed N is large (N ≳ 100). Q ≤ 1 was thought (incor-
rectly) to be the DQE. With Q as an adjustable parameter, this 
correction worked well for low noise data not subjected to 

Fig. 7. Montage showing the radial intensity and variance data for three thicknesses of amorphous silicon. Before processing, all data have been 
discretized, nint(I/Ie). The rows present data for silicon thicknesses of 5 nm (top), 9 nm (middle), and 15 nm (bottom). The columns show: left, the mean 
diffraction patterns on a logarithmic scale; middle, the normalized variances, nVar; right, the Poisson-noise corrected normalized variances, nVarNC. Three 
plots are presented for each experiment to indicate experimental variation.
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nint thresholding. When intensity data are not discretized, 
the correct Q = 1 form leads to overcorrection, as shown in 
Figure 8a.

Negative variance is correctable using Q = 0.78, found by 
trial-and-error (Fig. 8b). This is signikcantly lower than the 
EMPAD DQE values of 0.88–0.93 reported by Tate et al. 
(2016). While this correction works for less noisy data collected 
at 256 ms, there is a critical k value above which nVarNC be-
comes negative and diverges, which decreases as acquisition 
time shortens. The noisiest 1-ms data are uncorrectable by (7) 
with Q = 0.78. However, the noise correction is stable with 
Q = 1 for nint-discretized data, demonstrated in Figure 7.

To explore this, we conducted FEM simulations on the 
4,096-atom CRN model. The kinematical scattering simula-
tions start as “noise-free” and emulate Poisson noise by as-
signing the number of electrons per diffraction pattern, 
integer M, to be proportional to the exposure time τ (Gibson 
& Treacy, 2008). The number of patterns, N, is adjusted to 
keep N × M = 107, compliant with the constant-total-signal 
constraint of equation (3).

Figure 9a presents nVar simulations without noise correc-
tion for M = 2,000, 5,000, and 10,000 electrons per diffrac-
tion pattern, assuming a perfect detector. Most electrons 
concentrate in the central beam without signal dispersal 
(MTF = 1), eliminating the need for nint-thresholding. As 
in our experiments, shot noise dominates nVar, increasing 
with the scattering vector, while the noise-free simulation 

aligns with the expected nVar ≈ 1.0 for a CRN, as shown by 
the dark line compressed at the bottom of the plot.

In Figure 9b, the noise-corrected variance (nVarNC) is pre-
sented after subtracting 1/→I↑ for discrete Poisson noise 
(Equation (6)). The black trace represents the “no noise” 
simulation. NVarNC hovers around 1.0 for weak signals, be-
coming noisier for k > 10 nm−1. Although it may dip into 
negative values as mean intensity approaches zero, it generally 
varies around 1.0, conkrming the correction’s effectiveness. 
Notice the reduced noise in the intervals 2.5 ≤ k ≤ 3.5 nm−1 

and 5.0 ≤ k ≤ 5.5 nm−1, where diffraction peaks from SRO 
in a-Si emerge.

We modiked the computations to re,ect the EMPAD’s 
intensity-spread behavior. In the krst model, we assumed up to 
25% of the incident energy disperses over neighboring pixels, 
aligning with our observations of single-electron events on the 
EMPAD at 80 kV. Figure 9c shows that equation (6) (Q = 1) 
overcompensates for noise without nint thresholding, as ob-
served in our raw data (compare Fig. 8a). We knd by 
trial-and-error that Q ≈ 0.81 corrects the expected nVarNC val-
ue to ≈ 1.0 (red plot). Unlike our data (Fig. 8b), the correction 
works well out to k ≈ 13 nm−1. Applying nint-thresholding 
fully restores the discrete signal because less than half of the pixel 
signal is lost (black noise-free plot in Fig. 9c), and Figure 9b is re-
covered with Q = 1. We note that the blue trace in Figure 9c
shows peaks in the variance despite no MRO in the model. 
This is an artifact arising from the noise overcorrection.

This model emulates the average response characteristics of 
the EMPAD but does not capture all features shown in 
Figure 7. While the EMPAD retains about 75–80% of the sig-
nal on each pixel on average, some pixels lose over 50%.

In a second model, 100% of the incoming electron signal 
can disperse randomly over neighboring pixels. About half 
of the incident pixels, with less than 50% of the signal, will 
register 0, the other half registering 1. This dispersion de-
creases the mean intensity, →I↑, at each pixel and increases 
the normalized noise term, 1/→I↑, leading to overcorrection.

Figure 9d shows nVarNC with nint thresholding and Q = 1. 
The black trace represents the simulation with no noise and a 
perfect detector. This second model reveals new features: (i) 
nVarNC suppression; (ii) nVarNC decreasing to negative values, 
particularly in the noisiest (red) curve; and (iii) emergence of 
broad low-noise peaks near 2.5–3.7 nm−1 and 4.2–6.2 nm−1, 
consistent with experimental peaks in amorphous silicon. 
These peaks are absent in the idealized normalized variance 
plot (black trace) because the CRN model lacks MRO. A related 
knding by Rezikyan et al. (2015) noted variance suppression and 
the emergence of short-range order peaks when large random 
displacements of atoms were introduced. This model does not 
accurately re,ect the EMPAD response, where most pixels retain 
over 50% of the incident electrons, meaning the large variance 
suppression in experiments is not fully explained.

It is worth emphasizing that the ratio →I2↑/→I↑2 in (7), which 
contains both signal and noise, should also be computed with 
nint-thresholding for the formula to work correctly.

The experimental nVarNC peaks are most pronounced in 
thicker klms (Fig. 7). Yi & Voyles (2011) found that, with 
strong signal-to-noise, nVar scales inversely with specimen 
thickness. Treacy & Gibson (2012) showed that the 
background-subtracted peaks in the nVarNC scale as:

nVarNC − 1
m

􏼡 􏼢
t = constant. (8) 

(a)

(b)

Fig. 8. Illustration of the difficulties encountered when removing 
Poisson noise from nondiscretized experimental radial variances 
obtained from 15-nm thickness amorphous Si. (a) Use of equation (6) 
overcorrects, and nVarNC becomes increasingly large and negative as k 
increases. (b) Use of equation (7) with Q = 0.78. The correction works 
best for the 256 ms data with the lowest noise. As acquisition time 
decreases, the threshold k value where the correction fails decreases.
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As before, m is the illumination partial coherence parameter 
(m ≥ 1). Since m tends to be large, the 1/m term is small and 
can be ignored, consistent with the kndings of Yi & Voyles 
(2011). However, our data for different thicknesses (Fig. 7) 
do not conform to this expression, as nVarNC peak-to-dip 
prokles strengthen with increased thickness, contrary to 
equation (8). Possible explanations for this discrepancy in-
clude: (i) partial illumination coherence was different for 

each thickness; (ii) the decoherence contribution to m has a 
thickness dependence; (iii) the thinnest klms are affected 
most by the oxide layers; or (iv) there are changes in the 
MRO characteristics in the thinnest klms. We suspect differen-
ces in composition (iii) play a role in this discrepancy, al-
though (iv) is an intriguing possibility.

Noise Randomness
Our analysis assumes stochastic noise—Poisson-distributed in 
the incident signal and random in the detector. This assump-
tion can be tested. Since exposure times are decreased succes-
sively by factors of four in our experimental protocol, we 
expect the Poisson noise contribution to the normalized vari-
ance, 1/→I↑, to increase successively by factors of four. To ex-
plore this, we examined the ratios of the non-noise-corrected 
variances, nVar, focusing on data sets differing by factors of 
four in acquisition time. Thus, we computed the ratios V1/V4 
≡ nVar(1 ms)/nVar(4 ms); V4/V16 ≡ nVar(4 ms)/nVar(16 ms), 
etc. The four resulting ratio plots are presented in Figure 10
for the 5-nm thickness amorphous Si. Data from three experi-
mental runs at each exposure time conkrm the reproducibility. 
The ratio V1/V4 (red curve) quickly settles to ∼ 4.0 for 
k ≥ 2 nm−1. This conkrms that the dominant detector noise is 
also essentially random. The ratios in the less noisy data, 
V16/V64 and V64/V256, develop peaks with dips near k = 
3.1 and 5.5 nm−1. These arise because of the nonrandom vari-
ance contribution from the a-Si structure, which strengthens 
relative to the Poisson noise at the longer acquisition times.

(a) (b)

(c) (d)

Fig. 9. Kinematical simulations of the radial normalized variance, nVar(k), from a 4,096-atom model of a continuous random network of amorphous Si. The 
total scattered electron count per simulation is held constant at N × M = 107; 5,000 patterns with 2,000 counts total; 2,000 patterns with 5,000 counts 
total; and 1,000 patterns with 10,000 counts total. A high signal-to-noise (“No noise”) simulation is also shown. (a) Normalized variances, computed 
according to equation (4) (with no nint thresholding). (b) Poisson-noise-corrected normalized variances, computed according to equation (6). 
(c) Noise-corrected normalized variances (with no nint thresholding) computed for the N = 1,000 patterns with M = 10,000 counts total, simulated with a 
nonideal detector that spreads some of the incoming signal intensity over neighboring pixels, similar to the EMPAD behavior. The blue line shows that 
equation (4) (for Q = 1.0) overcorrects the noise and that a lower value, Q = 0.81, removes the shot noise well (red curve). (d) Up to 100% of the electron 
signal is randomly dispersed among immediate-neighbor pixels. Here, we use nint thresholding with Q = 1. The variance drops to a value close to zero, 
with two broad peaks appearing in the windows 2.5 ≤ k ≤ 3.7 nm−1 and 4.2 ≤ k ≤ 6.2 nm−1, corresponding to the two principal experimental variance 
peaks for amorphous Si.

Fig. 10. Ratios of the experimental radial variances, nVar, for the 5-nm 
thickness Si. V1/V4 is the ratio of the 1 ms to the 4 ms nVar data, etc. The 
ratio of the noisiest data sets, V1/V4 (red), is dominated by Poisson noise 
and settles on the expected value of 4. The longer exposure times are 
less dominated by noise, and the variance from sample structural 
features starts to dominate.
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Binning
Binning pixel data is known to improve the signal-to-noise in the 
enlarged camera pixels. Radić et al. (2022) demonstrated that 
on-chip binning has advantages over postprocessing in their 

FEM study. For the EMPAD camera’s 128 × 128 pixel array, 
binning can signikcantly reduce resolution along k. Figure 11
shows the results of 2 × 2 and 4 × 4 postprocessing binning of 
our EMPAD data across the three amorphous Si thicknesses. 
The krst column presents unbinned nVarNC plots from 
Figure 7 for comparison; the center column shows 2 × 2 bin-
ning, and the right column shows 4 × 4 binning. The variance 
peaks lose deknition with binning, especially with 4 × 4. The 
negative variance offset decreases by about a factor of 4 for 
2 × 2 and roughly 16 for 4 × 4. Overall, resolution along k is sig-
nikcantly degraded, with only 16 effective data pixels remaining.

The Reciprocity Theorem indicates that binning mutually 
incoherent detector pixels in k space effectively decreases spa-
tial coherence for a coherent point source. This is observed as a 
reduction in the height of variance peaks with 4 × 4 binning. A 
larger binned pixel represents an increasingly incoherent 
source (larger m), subtending a greater solid angle at the sam-
ple. The coherence width at the sample scales as ∼ 1/Δk, 
where Δk is the width of the binned pixels in reciprocal space.

Our diffraction data have a central disk diameter of about 
nine pixels, indicating it was oversampled, which reduces the 
detector-based contribution to incoherence. The 2 × 2 binned 
data remains oversampled with minimal impact on nVarNC 
peak heights, while 4 × 4 binning shows a noticeable drop in 
these peaks from hitting the sampling limit. The 2 × 2 binning 
improves variance without signikcantly affecting coherence. In 
addition to enhancing signal-to-noise, binning helps compensate 
for signal spreading by increasing the equivalent pixel size.

Fig. 11. Montage showing the noise-corrected radial variance data, nVarNC, after binning and nint thresholding. The rows are for the three thicknesses 
of amorphous silicon: 5, 9, and 15 nm. The columns are for different levels of binning. Left, no binning (similar to the data in Fig. 10, right column). Middle, 
binning 2 × 2 pixels; right, binning 4 × 4 pixels.

Fig. 12. Comparison of nVarNC for 5-nm thickness amorphous Si, using 
different experimental protocols. Red is for 256 diffraction patterns with 
256 ms acquisition time. Blue is the variance of 20,480 1-ms separate 
diffraction patterns, all taken from the same nominal sample location. 
Green takes the same 20,480-pattern dataset, merging 256 successive 
patterns at a time to form eighty 256-ms-equivalent patterns. Purple 
takes 65,536 1-ms patterns from different sample volumes, 
accumulating 256 successive patterns at a time to create the equivalent 
of 256 × 256-ms patterns. This mimics strong decoherence.
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Serial Diffraction
This study posited that a diffraction pattern collected over 
256 ms is equivalent to the sum of 256 consecutive 1-ms pat-
terns. We hypothesized that such a temporal breakdown of the 
data could identify the slower contributions to FEM decoher-
ence, but our FEM variance data showed no improvement. 
Our ECM data from kxed sample regions allow us to monitor 
temporal changes. Since the EMPAD readout time is 0.86 ms, 
a 256-ms pattern takes 476 ms to accumulate from 256 con-
secutive 1-ms patterns, so the elapsed times do not match.

Figure 12 compares four serial accumulations of the 
nVarNC data. The red curve is the 256-ms normalized vari-
ance from Figure 7 (top-right). The blue curve, derived from 
20,480 1-ms diffraction patterns from the same region ac-
quired over 38.1 s, is noisier but exhibits a negative offset simi-
lar to that in Figure 7. The presence of variance peaks indicates 
that subtle structural changes occurred during acquisition.

The green curve, derived from the same dataset, merges suc-
cessive blocks of 256 patterns to construct 80 patterns, each 
with a 256 ms signal time but requiring 476 ms to accumulate. 
The green curve should show low variance if the summed pat-
terns are similar, but instead, it shows signikcant variance, al-
beit with less dekned peaks. The ECM plot from Figure 5
suggests correlation times are around 272 ms, predicting meas-
urable differences in the summed patterns. The pronounced 
peaks from the red curve are observed but with reduced dekn-
ition. Readout and dark noise from the EMPAD do not signik-
cantly affect the normalized variance, as changing the number 
of diffraction patterns in the analysis does not impact the offset.

The purple curve represents the outcome of processing 
65,536 1-ms patterns from different sample areas, producing 
256 × 256-ms summed patterns. Since consecutive patterns 
come from different regions, this mimics severe displacement 
decoherence. The variance nVarNC is near zero with no identi-
kable peaks, although there is a slight negative variance beyond 
the central disk. Treating this residual variance as a measure of 
the nonstochastic contributions is tempting. However, it does 
not correct the negative variance of the red curve past 
k > 6.2 nm−1. We note that thickness variations across the 
probed areas would produce a positive residual variance.

Conclusions
This study explored the hypothesis that rapid acquisition of 
STFEM diffraction data could reduce decoherence effects, en-
hancing both peak and background FEM variance. We found 
no signikcant enhancement in the noise-corrected normalized 
variance peaks from MRO in amorphous Si with acquisition 
times faster than about 1/4 s.

Data from ECM supports this, showing a correlation decay 
time of around 1/4 s in a-Si diffraction patterns. Although we 
note a minor improvement in variance down to 64 ms acquisi-
tion times, the increased difkculty of noise removal outweighs 
the benekt.

The observed decay time is slower than anticipated, as pre-
vious studies suggested that decoherence processes might oc-
cur at shorter time scales. Our experiment focused on 
structural changes slower than 1 ms. Thus, higher-frequency 
decoherence events remain an unconkrmed possibility.

We still do not know why background variance in FEM is so 
strongly suppressed. It remains unclear what the beam-sample 
changes are, likely sample-dependent, over timescales shorter 
than 1 ms. Simulations conkrm that phonons are not primarily 

responsible (Rezikyan et al., 2015). Sample-charge ,uctua-
tions (currents) may play a more signikcant role in STFEM 
than previously suspected (Russo & Henderson, 2018). All 
electrons in the focused beam pass close to the varying charge 
building up in the irradiated region, possibly with accumulat-
ing damage (Jiang, 2016). Incoherence is associated with the 
concentrated illumination source, whereas decoherence is 
thought to be associated with the concentrated beam cross-
over at the specimen—at least in STFEM. A comparison of 
STFEM and TDFEM variance data would be instructive, as 
the illumination ,uence rates at the specimen differ by orders 
of magnitude. Rapid-acquisition TDFEM, being image-based, 
may facilitate specimen-drift correction.

Noise correction dominated our analysis. Employing a 
nearest-integer-electron threshold to pixel intensity restored 
much of the Poisson noise characteristics. As acquisition 
time decreased, a residual overcorrection in nVarNC ap-
peared, apparently not signikcantly tied to detector readout 
noise, which impeded analysis of the absolute variance back-
ground values. Pixel binning improves the signal-to-noise ra-
tio and lessens the impact of signal spreading with a possible 
loss of spatial coherence.

A fast electron detector with precise pulse counting is highly 
desirable for Poisson noise correction in low ,uence FEM 
studies.
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Appendix: An analytical model of non-Poisson 
noise
As Figure 4 shows, many electron-detection events spread en-
ergy over neighboring pixels. The low-intensity histogram in 
Figure 3 shows a signikcant intensity spread between the 
discrete-valued peaks. We presented a computational model 
showing how this affects the normalized variance from a mod-
el CRN (Fig. 8). However, an analytical mathematical model 
of the impact on Poisson noise variance is useful.

We treat the incident signal as Poisson distributed, with events 
arriving with a probability distribution given by equation (5). If 
there are q arriving events at a pixel, this becomes dispersed as an 
intensity I in the histogram by a dispersal function G(I, q). Thus, 
the intensity I is given by the probability distribution

P(I) =
􏼧∞

q=0

G(I, q)
→q↑q

q!
e−→q↑. (A.1) 

This transforms the red delta-function peaks in Figure 3 into a 
continuous distribution, such as the black curve. The mean in-
tensity is then

→I↑ =
􏼧∞

q=0

→q↑q

q!
e−→q↑∫ ∞

0 IG(I, q) dI, (A.2) 

and the second moment is

→I2↑ =
􏼧∞

q=0

→q↑q

q!
e−→q↑∫ ∞

0 I2G(I, q) dI. (A.3) 

We assume the dispersal function G(I, q) conserves total energy 
(signal). The second moment of intensity, and thereby the nor-
malized variance (equation (4)), is expected to increase because 
we now include the continuum of smaller noninteger values I in 
the statistics and do not restrict the values of I to the discrete q. If 
the detector were perfect, we would replace G(I, q) with a Dirac 
delta function, G(I, q) ≐ δ(I − q), restoring nVar = 1/→q↑ for 
the Poisson noise.

For analytical simplicity, we model the G(I, q) as Gaussians,

G(I, q) = 1􏼥􏼥􏼥
2π

↔
σq

exp − (I − q)2

2σ2
q

􏼨 􏼩

. (A.4) 

Strictly, the G(I, q) functions must maintain a positive signal 
I ≥ 0: the signal dispersal should not create a negative inten-
sity anywhere. The model is acceptable if σq is kept small. 
Gaussians do not precisely reproduce the intensity histograms 
(Fig. 3), but the essential feature (intensity between discrete 
peaks) is reproduced.

Since the signal from q electrons, assumed to be arriving sep-
arately, is the (q − 1)-fold convolution of the response func-
tion for a single electron arrival, we write the variances as

σ2
q = σ2

0 q = 0,
q σ2

0 + σ2
d

􏼪 􏼫
q > 0.

􏼬
(A.5) 

σ0 is the standard deviation of the detector noise on the zero 
peak, and σd is the standard deviation of the signal generated 
within the detector by the arrival of one electron. This has to 
be added to the variance of the zero level, σ2

0, which is present 
at each electron arrival event.

With Gaussians, the integrals in Equations (A.2) and (A.3) 
give

→I↑ =
􏼧∞

q=0

→q↑q

q!
e−→q↑ σq􏼥􏼥􏼥

2π
↔ exp −q2/2σ2

q

􏼭 􏼮􏼯

+ 1
2

q2 + σ2
q

􏼭 􏼮
1 − erf −q/

􏼥􏼥
2

↔
σq

􏼭 􏼮􏼭 􏼮⎛
,

(A.6) 

and

→I2↑ =
􏼧∞

q=0

→q↑q

q!
e−→q↑ 3qσq􏼥􏼥􏼥

2π
↔ exp −q2/2σ2

q

􏼭 􏼮􏼯

+ q
2

1 − erf −q/
􏼥􏼥
2

↔
σq

􏼭 􏼮􏼭 􏼮⎞
,

(A.7) 

from which we obtain nVar using equation (4).
Figure A.1 shows simulations using this model, setting σ0 = 0; 

and σd = 0.0 (Poisson), 0.5, and 1.0 respectively. This conkrms 
that the normalized noise variance is increased by the signal 
spread (σq > 0) relative to that expected from Poisson noise.

Fig. A.1. Results of an analytical model showing how pixel spread 
affects the normalized variance of detected shot noise. Blue shows nVar 
for the idealized Poisson model. The green and red curves are based on 
signal spread models where the detector does not have a delta function 
response to incoming electrons. This spread increases the normalized 
variance relative to the idealized Poisson value.
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