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S1. Reconstruction of simulated uniformly-magnetised nanowires 
Simulations have previously been used to assess how the range of sample tilt angles, sample tilt 
increment and sample orientation can affect three-dimensional (3D) reconstruction of 
magnetisation 𝑴⃗⃗⃗  [1]. It was found that a magnetic vortex state can be reconstructed with an 
average error of below 1 % from two orthogonal tilt series with ranges of ±60°, regardless of its 
orientation. The sample described in the main text, which contains a magnetic vortex state and 
uniformly-magnetised regions, was imaged using two tilt series with a 10° tilt increment and tilt 
ranges of -60° to 30° and -60° to 0°. 

In order to assess the reconstruction errors in uniformly-magnetised parts of the sample, 400-
nm-long, 50 nm x 50 nm square-cross-section nanowires were simulated with different 
magnetisation directions. In the simulations described below, a 0° tilt orientation corresponds to 
the electron beam passing along the z-axis and 𝜇0|𝑴⃗⃗⃗ | is taken to be 1 T for simplicity. It is initially 
assumed that the geometrical model of the sample is not affected by missing wedge errors, which 
are discussed later in this section. 

Fig. S1a shows simulations of a nanowire magnetised along the x-axis, for which a phase 
measurement at 0° would yield the result shown in Fig. S1b. For the same angular spacing and tilt 
ranges as in the experiment described in the main text, Fig. S1c shows that the distribution of 𝑴⃗⃗⃗  
determined using model-based iterative reconstruction (MBIR) has an error of below 3 % in most 
of the volume of the nanowire, apart from a small number of voxels at the corners. The average 
error in the magnitude of 𝑴⃗⃗⃗  in the nanowire cross-section, which is shown in Fig. S1d, is below 
1%. If the magnetisation direction is instead oriented along the y-axis, as shown in Fig. S2a, then 
a smaller total phase shift is detected, as shown in Fig. 2b. Fig. S2c shows that the errors in the 
magnitude of 𝑴⃗⃗⃗  determined using MBIR are again greatest at the sample corners, while Fig. S2d 
shows that the average error in the cross-section is again below 1%. If the magnetisation direction 
is instead oriented along the z-axis, as shown in Fig. S3a, then no magnetic phase shift is 
detected at 0°, as shown in Fig. S3b. Fig. S3c shows that the errors are again greatest at the 
sample corners, while Fig. S3d shows that the average error in the cross-section is again below 
1%. 
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The simulations show that, for the same imaging orientations as in the experiment, the average 
error in the magnitude of 𝑴⃗⃗⃗  in the reconstructions is below 1%. Reconstruction errors close to 
the nanowire surface likely arise because of the limited and asymmetrical tilt range, as well as 
the range of possible configurations of 𝑴⃗⃗⃗ . Although MBIR finds a distribution of 𝑴⃗⃗⃗  that minimises 
the error between the simulated and input phase images, different configurations of 𝑴⃗⃗⃗  can 
produce equivalent phase images, in particular when the tilt ranges are limited. In the present 
sample, voxels at the corners of the geometrical model are the least constrained and show the 
greatest errors. 

 

  

Fig. S1. Reconstruction of a simulated nanowire magnetised along the x-axis. (a) Model of a 400-nm-
long, 50 nm x 50 nm nanowire, showing the sample geometry and the 𝑴⃗⃗⃗  direction. (b) Phase contour map 
at 0° tilt, coloured to show the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑐𝑜𝑠(12𝜑𝑚𝑎𝑔). 
The sample outline is marked in white. (c) Reconstruction with the 𝑴⃗⃗⃗  vectors scaled and coloured to show 
the magnitudes of errors greater than 3%. (d) Average 𝑴⃗⃗⃗  magnitude error in a cross-section, demonstrating 
over and under estimates of below 1%. The greatest errors are at the corners of the nanowire, where the 
separation of 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗  is ambiguous. See text for details. 

 

The geometrical model of the sample affects the reconstruction because it defines where in 
space the magnetic material can be located. If the geometrical model of the square-cross-
section nanowire in Fig. S4a were to be generated from experimental electron holograms without 
accurate missing wedge correction, then the geometrical model would typically be larger than 
the true nanowire. It was also observed that FEBID nanowire edges appear diffuse when imaged 
experimentally due to uneven surface texture and variations in material composition. This results 
in a ~5 nm error when determining the position of the sample surface and limits the precision of 
any missing wedge correction. Accordingly, a 5 nm error is introduced when correcting the 
missing wedge in the following simulation. Fig. S4b shows a cross-section of a partially-corrected 
model generated for the same imaging orientations as in the main text. As the model incorrectly 
describes some of the vacuum as magnetic material, the reconstructed distribution of 𝑴⃗⃗⃗  has 
errors close to some of the sample surfaces. Fig. S4c shows that the values of 𝑴⃗⃗⃗  are then spread 
out, although the peak corresponds to the correct value for this material. The spread is attributed 
to the intermixing of vacuum and material values. Fig. S4d shows the average error in the cross-
section, which is influenced by an overestimation of the vacuum values and a reduction of the 
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values in the nearby material. The reconstructed distribution has a mean value of 𝜇0|𝑴⃗⃗⃗ | of 0.92 T 
and a standard deviation of 0.14 T. The results show that, if surface errors are present, then the 
reconstruction of a uniform magnetic domain can produce a distribution of values of 𝑴⃗⃗⃗ , albeit 
one in which the peak is close to the true value. 

Taken together, the simulations show that a uniformly-magnetised nanowire can be 
reconstructed with an average  error of below 1% for the imaging orientations in the main text. 
However, errors in the geometrical model of the nanowire can cause vacuum and material values 
to intermix close to the surface. 

 

 

Fig. S2. Reconstruction of a simulated nanowire magnetised along the y-axis. (a) Model of a 400-nm-
long, 50 nm x 50 nm nanowire, showing the sample geometry and the 𝑴⃗⃗⃗  direction. (b) Phase contour map 
at 0° tilt, coloured to show the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑐𝑜𝑠(12𝜑𝑚𝑎𝑔) 
The sample outline is marked in white. (c) Reconstruction with the 𝑴⃗⃗⃗  vectors scaled and coloured to show 
the magnitudes of errors greater than 3%. (d) Average 𝑴⃗⃗⃗  magnitude error in a cross-section, demonstrating 
over and under estimates of below 1%. The greatest errors are at the corners of the nanowire, where the 
separation of 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗  is ambiguous. See text for details. 
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Fig. S3. Reconstruction of a simulated nanowire magnetised along the z-axis. (a) Model of a 400-nm-
long, 50 nm x 50 nm nanowire, showing the sample geometry and the 𝑴⃗⃗⃗  direction. (b) Phase contour map 
at 0° tilt, coloured to show the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑠𝑖𝑛(12𝜑𝑚𝑎𝑔). 
The sample outline is marked in white. (c) Reconstruction with the 𝑴⃗⃗⃗  vectors scaled and coloured to show 
the magnitudes of errors greater than 3%. (d) Average 𝑴⃗⃗⃗  magnitude error in a cross-section, demonstrating 
over and under estimates of below 2%. The greatest errors are at the corners of the nanowire, where the 
separation of 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗  is ambiguous. See text for details. 

 

 

Fig. S4. Reconstruction of a simulated nanowire with incomplete missing wedge correction. (a) Model 
of a 400-nm-long, 50 nm x 50 nm nanowire, showing the sample geometry and the 𝑴⃗⃗⃗  direction. 
(b) Reconstructed geometrical model, showing a cross-section of the effect of missing wedge correction. 
(c) Reconstructed 𝑴⃗⃗⃗  magnitude distribution if the missing wedge is not corrected fully. (d) Average 𝑴⃗⃗⃗  
magnitude error in a cross-section, showing false values assigned to vacuum and a reduced signal in voxels 
close to the false region. The reconstructed surface voxels are incorrect if there are errors when generating 
the geometrical model. The reconstruction has a mean value of 𝜇0|𝑴⃗⃗⃗ | of 0.92 T and a standard deviation of 
0.14 T. 
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S2. Reconstruction of simulated null spaces 
Information can be lost at two stages when simulating phase images from a given magnetisation 
configuration (𝑴⃗⃗⃗ ): first when projecting 𝑴⃗⃗⃗  and second when convolving the projected  distribution 
of 𝑴⃗⃗⃗  with a kernel to obtain the corresponding phase [2, 3]. As described in [2], information loss 
from projection can be avoided by using two complete tilt series. However, information loss 
during phase calculation is unavoidable, as certain distributions of 𝑴⃗⃗⃗  correspond to eigenstates 
of a null space and can be added to any reconstruction without changing the corresponding 
phase images. As null space eigenstates cannot be recovered using MBIR unless appropriate 
regularising terms are used, null spaces can show 𝑴⃗⃗⃗  ≈  0 when they are reconstructed. In 
practice, null space eigenstates are only known to exist in some ferromagnetic nanostructures, 
such as fully divergent configurations [2] and Néel-type magnetic domain walls [4]. Here, several 
such configurations are simulated and compared to a simulation performed for an L-shaped 
nanowire structure. The effect of projection-based information loss is illustrated in Fig. S5, which 
shows simulations of magnetic phase images for nanowires that have vortex-type magnetic 
domain walls at their centres. The nanowires have a diameter of 100 nm, an aspect ratio of 10:1 
and 𝜇0|𝑴⃗⃗⃗ | =  1 T. The phase images shown in Fig. S5b3 and Fig. S5c3 are indistinguishable if the 
phase measurements have more than 0.1 % noise, even though they correspond to different 
configurations of 𝑴⃗⃗⃗ . The sample must be tilted, as shown in Fig. S5a, to enable successful 
reconstruction. 

In the null space simulations shown below, complete tilt series are simulated to avoid 
information loss from projection, so that any information loss during reconstruction can be 
attributed only to phase calculation. 

Whereas an infinitely-long, first-order Halbach cylinder does not create a magnetic signal in the 
transmission electron microscope in any projection direction [2, 5], this is not the case for a 
Halbach cylinder of finite length. Fig. S6a shows a simulation of a 40-nm-long, 40-nm-diameter 
cylinder with 𝜇0|𝑴⃗⃗⃗ | =  1 T, in which 𝑴⃗⃗⃗  is oriented radially outwards and has non-zero divergence 
at all points, as shown in cross-section in Fig. S6b. Phase images were simulated for a 10° tilt 
increment about two orthogonal 180° tilt axes, including projections along its axis (Fig. S6c) and 
perpendicular to its axis (Fig. S6d). Although Fig. S6c is expected to show no magnetic phase 
shift, a slight residual signal is present close to the surface of the cylinder due to the effects of 
digitisation (i.e., finite pixel size). In Fig. S6d, there would be no signal if the cylinder were infinitely 
long. However, a phase shift is present because the cylinder has a finite length. The simulated 
phase images were used to reconstruct 𝑴⃗⃗⃗  and compared to the input magnetisation distribution. 
Fig. S7a and S7b show the reconstructed distributions of 𝑴⃗⃗⃗  in cross-section at the surface of the 
cylinder. The magnitude of 𝑴⃗⃗⃗  is up to two times larger than the input, presumably because there 
is insufficient signal to distinguish between 𝑴⃗⃗⃗  and the demagnetising field 𝑯⃗⃗⃗ . Fig. S7c and S7d 
show the reconstructed cross-section of the null space in the middle of the cylinder, where the 
magnitude of 𝑴⃗⃗⃗  is 90 % lower than the input. 𝑴⃗⃗⃗  is also rotated towards the direction of magnetic 
induction. The simulations show that such configurations, in which 𝑴⃗⃗⃗  is divergent at all points, 
cannot be reconstructed successfully without the use of additional constraints. 

Similar null spaces have been observed when imaging Néel-type magnetic domain walls in thin 
films that exhibit the interfacial Dzyaloshinskii–Moriya interaction [4, 6, 7]. In order to evaluate 
possible reconstruction errors, a 100 nm x 100 nm x 50 nm film containing a Néel-type magnetic 
domain wall was simulated, as shown in Fig. S8a and S8b. Phase images were simulated with a 
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10° tilt increment about two orthogonal 180° axes. A magnetic phase shift from the uniformly-
magnetised parts of the film is detected in all of the projections, as shown in Fig. S8c and S8d. 
The reconstruction is “correct” in the uniformly-magnetised parts of the film. However, some 
signal is missing at the magnetic domain wall itself. Fig. S9a and S9b show that the surface 
reconstruction has a 15% error throughout the magnetic domain wall. 𝑴⃗⃗⃗  is also not separated 
fully from 𝑯⃗⃗⃗  at the corners of the film. Fig. S9c and S9d show the null space inside the film, where 
75 % of the signal is lost at the magnetic domain wall. This loss of signal depends on the magnetic 
domain wall width. The simulations show that only uniform regions around Néel-type magnetic 
domain walls can be reconstructed quantitatively in thin films without the use of additional 
constraints. In addition, qualitative measurement of magnetic domain wall orientation would 
require a large range of tilt angles, in accordance with previous simulations [1]. 

 

 

Fig. S5. Simulated magnetic phase images of non-unique signals in vector field projections. (a1), (b1), 
(c1) Projections of magnetisation (𝑴⃗⃗⃗ ) in the electron beam direction. (a2), (b2), (c3) Isometric projections 
of 𝑴⃗⃗⃗ . The red arrows show the direction of the electron beam. The blue arrows show the direction of 
𝑐𝑢𝑟𝑙(𝑴⃗⃗⃗ ) at the core of a vortex-type magnetic domain wall. (a3), (b3), (c3) Corresponding magnetic phase 
contour images, displayed as 𝑐𝑜𝑠(5𝜑𝑚𝑎𝑔), coloured to show the direction of the projected in-plane 𝑩⃗⃗  field 
(inset). The magnetic vortex states only affect the electron phase if 𝑐𝑢𝑟𝑙(𝑴⃗⃗⃗ ) has a component parallel to 
the electron beam direction. Therefore, in (a) the magnetic vortex is imaged perfectly, but in (b) the magnetic 
domain wall introduces no phase shift and is indistinguishable from the non-magnetic material 
represented in (c). See text for details. 

 

Néel-type magnetic domain walls may also be present in nanowire structures. The magnetic 
domain wall width in cobalt nanowires was observed to be ~100 nm [8] and the rotation of 𝑴⃗⃗⃗  in 
the wall may be smaller than 180°. A Néel-type magnetic domain wall was simulated in an L-
shaped, 600-nm-long, 100-nm-wide, square-cross-section nanowire, as shown in Fig. S10a and 
S10b. Phase images were simulated with a 10° tilt increment about two orthogonal 180° axes, as 
shown in Fig. S10c and S10d. The reconstruction in Fig. S11 shows that the full volume of the 
reconstruction acquires a 1 % error as a result of the difficulty of separating 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗ . Fig. S11d 
also shows that up to 5 % of the signal is lost in the middle of the magnetic domain wall, 
demonstrating that null space effects in nanowires are smaller than those in thin films. 
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With regard to the main text, simulations have previously been used to show that magnetic vortex 
states do not result in null spaces if they are imaged close to the direction of the curl of the 
magnetic vortex [1]. In the absence of a significant null space contribution, any errors associated 
with the separation of 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗  should be comparable to the ~2% random error in the 
reconstruction discussed in the main text. 
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Fig. S6. Simulated magnetic phase images of a divergent Halbach cylinder. (a) Model of a 40-nm-long, 
40-nm-diameter cylinder showing the sample geometry and the 𝑴⃗⃗⃗  direction. (b) 𝑴⃗⃗⃗  distribution in a cross 
section of the sample. (c) Phase contour map generated along the axis of the cylinder. (d) Phase contour 
map generated perpendicular to the axis of the cylinder. The phase contour images are coloured to show 
the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑐𝑜𝑠(200𝜑𝑚𝑎𝑔). The sample outline is 
marked in white. An infinitely-long Halbach cylinder would not create a magnetic signal in any projection 
direction. In contrast, the finite version creates a signal in some projection directions. 

 

 

Fig. S7. Reconstruction of a simulated divergent Halbach cylinder. (a) Reconstructed 𝑴⃗⃗⃗  cross-section 
at the surface. (b) Magnitude of error at the surface, showing an overestimate of  up to 110 %. (c) 
Reconstructed 𝑴⃗⃗⃗  cross-section in the middle of the cylinder. (d) Magnitude of  error in the middle, showing 
a 90 % loss of signal. The 𝑴⃗⃗⃗  magnitude is greater than it should be at the surface because 𝑴⃗⃗⃗  and 𝑯⃗⃗⃗  were 
not separated correctly. In the middle of the cylinder, the magnitude is 90 % lower than the ground truth  
because almost no signal is detected from this region.  
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Fig. S8. Simulated magnetic phase images of a Néel-type magnetic domain wall. (a) Model of 
100 nm x 100 nm x 50 nm sample containing a Néel-type magnetic domain wall, showing the sample 
geometry and the 𝑴⃗⃗⃗  direction. (b) 𝑴⃗⃗⃗  distribution in a slice of the sample close to the edge. (c) Top-down 
phase contour map. (d) Sideways phase contour map. The magnetic phase contour images are coloured 
to show the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑐𝑜𝑠(40𝜑𝑚𝑎𝑔). The sample 
outline is marked in white.  The signal from the uniformly-magnetised domains is detected, but some of the 
signal from the magnetic domain wall is lost. 

 

 

Fig. S9. Reconstruction of a simulated Néel-type magnetic domain wall. (a) Reconstructed 𝑴⃗⃗⃗  slice at 
the surface. (b) Vector magnitude error at the surface, showing an overestimate of  50% at the corner of the 
film and errors of 15% at the magnetic domain wall surface. (c) Reconstructed 𝑴⃗⃗⃗  slice in the middle of the 
film. (d) Magnitude of error in the middle of the film, showing a 75 % loss of signal at the magnetic domain 
wall. The surface of the Néel-type magnetic domain wall can be reconstructed, but there is a null space in 
the centre. See text for details.  
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Fig. S10. Simulated magnetic phase images of a nanowire with a Néel-type magnetic domain wall. (a) 
Model of 100 nm x 100 nm cross-section nanowire with a Néel-type magnetic domain wall, showing the 
sample geometry and the 𝑴⃗⃗⃗  direction. (b) 𝑴⃗⃗⃗  distribution in a slice of the sample. (c) Top-down phase 
contour map. (d) Sideways phase contour map. The magnetic phase contour images are coloured to show 
the direction of the projected in-plane 𝑩⃗⃗  field (inset), displayed as 𝑐𝑜𝑠(6𝜑𝑚𝑎𝑔). The sample outline is 
marked in white. The magnetic phase shift is detected from all parts of the nanowire structure. 

 

 

Fig. S11. Reconstruction of a simulated nanowire with a Néel-type magnetic domain wall. 
(a) Reconstructed 𝑴⃗⃗⃗  slice at the surface. (b) Vector magnitude error at the surface, showing 1 % errors 
throughout. (c) Reconstructed 𝑴⃗⃗⃗  slice in the middle of the film. (d) Magnitude of error in the middle, 
showing a 5 % loss of signal at the centre of the magnetic domain wall. In a nanowire, the Néel-type 
magnetic domain wall null space is reduced. See text for details.  
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S3. Software 
The primary scientific software packages used in this study, their roles in the workflow (Fig. S12), 
their repositories and relevant accompanying publications (if available) are listed here: 

 

Fig. S12. Workflow for 3D magnetisation reconstruction. The red boxes indicate the primary processing 
steps: alignment, reconstruction using MBIR, and diagnostics. Datasets are processed to generate both a 
geometrical mask that defines where the magnetic material is located and a series of magnetic phase shift 
measurements corresponding to 𝑩⃗⃗  field projections. At each iteration, a distribution of 𝑴⃗⃗⃗   is generated, and 
then its magnetic phase shift is simulated and compared to the measurements. The iterations are repeated 
until an optimal 𝑴⃗⃗⃗  is found. Optimal estimation diagnostics are performed to assess random and 
systematic errors in the reconstruction. The steps are shaded to indicate the data type that is being 
processed: two-dimensional phase images (green), 3D magnetic vector fields (blue) and a 3D electrostatic 
scalar field (yellow). 

• MBIR-TEM. MBIR-based magnetisation reconstruction package guiding the workflow 
[9]. 
Repository: https://github.com/AurysSilinga/MBIR-TEM 

• F3ast. FEBID modelling package used for sample fabrication with CAD [10].   
Repository: https://github.com/skoricius/f3ast 

• Gatan DigitalMicrograph with Holoview and HoloWorks plugins. Hologram-to-
phase reconstruction [11][12].  
Repository: http://www.dmscripting.com 

• Hyperspy. Interface between DigitalMicrograph and Python, with interactive image 
manipulation in Python [13].  
Repository: https://hyperspy.org/ 

• scikit-image. Canny edge detection and image manipulation for phase shift 
separation [14].  
Repository: https://scikit-image.org/ 

• fpd. Image feature matching for phase shift separation and RANSAC-algorithm-based 
background removal for tomographic alignment [15].  
Repository: https://gitlab.com/fpdpy/fpd 

• Scipy. Error function minimisation for tomographic alignment [16].  
Repository: https://scipy.org/ 

• jutil. Conjugate gradient minimisation for MBIR.  
Repository: https://jugit.fz-juelich.de/j.ungermann/jutil 

• Pyramid. MBIR simulations [17].  
Repository: https://iffgit.fz-juelich.de/empyre/empyre/-/tree/pyramid-master   

https://github.com/AurysSilinga/MBIR-TEM
https://github.com/skoricius/f3ast
http://www.dmscripting.com/
https://hyperspy.org/
https://scikit-image.org/
https://gitlab.com/fpdpy/fpd
https://scipy.org/
https://jugit.fz-juelich.de/j.ungermann/jutil
https://iffgit.fz-juelich.de/empyre/empyre/-/tree/pyramid-master
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S4. Phase reconstruction using off-axis electron holography 
Off-axis electron holography is a TEM technique used to measure the phase shift of electrons and 
is employed to acquire the tomographic series of holograms described in the main text. Fig. S13 
shows the electron-optical diagram, where the electron beam is split into the object wave and 
the reference wave, which interfere and form a hologram on the detector. Fig. S14 shows an 
example of reconstructing the relative phase shift between the object and reference wave from a 
hologram. For an accurate reconstruction, there should not be any electromagnetic fields in the 
path of the reference wave but in practice, weak long-range fields from the sample and residual 
fields from the TEM components perturb the reference wave. The residual fields are measured 
and corrected acquiring a reference hologram of free space. Fig. S15 shows an example of 
combining two reconstructed phase shift images to separate the electrostatic and magnetic 
contributions to the phase shift. The processing steps are performed using a combination of 
Gatan Digital Micrograph and Python scripts listed in section S3. 

 

Fig. S13. Ray diagram of off-axis electron holography. The biprisim splits the electron beam into two waves 
that interfere and form a hologram on the detector. The spacing of interference fringes in the hologram is 
affected by electromagnetic fields in the sample. Reproduced from [18].  
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Figure S14. Hologram-to-phase reconstruction. (a) a hologram of the sample (top) and a reference 
hologram of free space (bottom). Five holograms are acquired with 2 s exposure time each. The interference 
fringe spacing is less than 3 nm, which is shown in the main text. (b) A fast Fourier transform (FFT) is applied 
to all holograms. The magnitude of the complex number array is shown. There is a strong signal at the 
sidebands, which corresponds to a spatial frequency of approximately 0.35 rad/nm. (c) The centre line is 
masked to reduce Fresnel fringes and a virtual aperture is applied to select one sideband. (d) An inverse 
FFT is applied to the masked image, which results in a complex real-space image. The phase of the complex 
images is shown, and it corresponds to the phase difference between the object and reference waves. The 
difference between the minimum and maximum values of this vacuum measurement is approximately 
5 radians. (e) Without loss of generality, the phase images are ‘unwrapped’ by applying a 2π offset at the 
discontinuous lines. Then they are averaged to reduce measurement noise and the vacuum perturbation is 
subtracted. The total phase shift image is shown. (f) To ensure consistency, the image is rotated such that 
the electron beam direction is out-of-page, and the tomographic tilt axis is less than 15° from the horizontal. 
The rotation is performed by assuming that the image defines a two-dimensional plane in 3D space. Then 
the sign of the image is changed, such that the electrostatic mean-inner-potential is positive. 
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Figure S15. Separation of electrostatic and magnetic electron phase shift. (a) Total phase shift images at 
−3.7° tilt (top) and 176° tilt. (b) Both images have been reconstructed following the procedure in Fig. S14, 
are rotated such that the electron beam is out-of-plane, and have been aligned with sub-pixel precision 
using the edge detection method described in the main text. (b) The images in (a) are added and divided by 
two to calculate the half-sum image (top) and subtracted and divided by two to calculate the half-difference 
image (bottom). The half-sum is the electrostatic phase shift that is proportional to the projection of the 
mean-inner-potential, and the half-difference is the magnetic phase shift that is related to a projection of 
magnetic induction. (c) Both images are further processed before reconstruction with MBIR. A threshold is 
applied to the electrostatic phase shift (top) to define the location of the sample. Gaussian smoothing is 
applied to the magnetic phase shift image (bottom) to reduce noise, and the image is rebinned from 
0.65 nm pixel size to 10.4 nm pixel size to reduce computation time. Using smaller pixel sizes increases 
computation time, but does not improve the resolution of the final reconstruction because it is limited by 
tomographic alignment. 
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S5. MBIR cost function minimisation 

During MBIR, a forward model 𝐹 is used to convert a magnetisation distribution 𝑴⃗⃗⃗  in a 3D volume 
into a tilt series of simulated magnetic phase images [19]: 

𝜑1,𝑐𝑎𝑙𝑐 , … , 𝜑𝑛,𝑐𝑎𝑙𝑐 = 𝐹(𝑴⃗⃗⃗ ) .         (S1) 

Conversely, a magnetisation distribution that satisfies the magnetic phase measurements can 
be determined by minimising a cost function of the form 

𝐶 = ∑ (𝜑𝑖,𝑚𝑒𝑎𝑠 − 𝜑𝑖,𝑐𝑎𝑙𝑐(𝑴⃗⃗⃗ ))
2

𝑖 + 𝜆1(∇𝑴⃗⃗⃗  ∙ ∇𝑴⃗⃗⃗ ) + 𝜆2var(|𝑴⃗⃗⃗ |) ,    (S2) 

where 𝐶 is the cost, 𝑴⃗⃗⃗  is the magnetisation vector field, 𝜑 are the phase images, 𝜆 are the 
regulariser weights, ∇ is the gradient operator and ‘var’ is the variance operator. In order to 
account for multiple possible solutions for 𝑴⃗⃗⃗ , regularising terms are used, for example to favour 
a solution that exhibits a low gradient or a small variance in the magnitude of the magnetisation. 
A low gradient favours ferromagnetic order, while a small variance favours a sample that contains 
similar materials. The cost function is minimised by using a preconditioned conjugate gradient 
method [20] to find the optimal solution for the magnetisation. 

In the phase object approximation, the forward model for phase image calculation can be written 
in the form [19] 

𝜑𝑚𝑎𝑔(𝑥, 𝑦) =  
−𝜇0

2Φ0
∬

(𝑦 − 𝑦′) 𝑀𝑥(𝑥,𝑦) −(𝑥−𝑥′) 𝑀𝑦(𝑥,𝑦)

(𝑥−𝑥′)2+ (𝑦−𝑦′)2
 d𝑥′d𝑦′ ,     (S3) 

where Φ0 is a magnetic flux quantum and 𝑀𝑥 and 𝑀𝑦 are projected magnetisation values in the x 
and y directions, respectively. The use of a geometrical model to describe the sample reduces 
the number of magnetisation voxels used in the calculation. The convolution can be optimised 
by implementing it in reciprocal space. Instead of evaluating the convolution at each phase image 
pixel, each projected magnetisation pixel can be assumed to be a magnetised disk, for which the 
phase shift can be described analytically. All of the phase image pixels can then be calculated 
simultaneously by convolving the phase contribution from a single magnetised disk with all of the 
positions at which magnetic moments are located. This approach improves the scaling of the 
execution time from 𝑂(N4) to 𝑂(𝑁2𝑙𝑜𝑔(𝑁)), where 𝑁 is the number of magnetisation voxels. 
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