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A B S T R A C T

Phase contrast techniques in the transmission electron microscope (TEM), such as off-axis electron holography 
(OAEH) and four-dimensional scanning TEM (4D-STEM), are widely utilized for mapping electromagnetic fields 
both within and surrounding nanoscale materials. In this study, the two techniques are used to measure long- 
range electrostatic potentials and electric fields generated by electrically-biased colinear conducting needles. 
The results are compared between the two techniques and with a theoretical model. The experimental mea
surements obtained using OAEH and 4D-STEM via differential phase contrast reveal discrepancies in the mag
nitudes and distributions of the electric fields surrounding the needles. A comparison of both approaches with a 
theoretical model reveals that the discrepancy results from perturbation of the reference wave in OAEH by the 
highly extended electric field outside the needles, leading to an underestimate of the electrostatic potential when 
using OAEH. In contrast, the 4D-STEM measurements are more directly interpretable. We provide a theoretical 
background for the OAEH results, which fully explains and supports the findings.

1. Introduction

Quantitative measurements of electromagnetic fields are of great 
interest for fundamental research and for the development of next- 
generation electronic and spintronic devices. For example, a knowl
edge of the electric field around a field emitter tip plays an important 
role in understanding its field emission properties, including the current 
density and emission area, as well as the spatial and temporal coherence, 
which are related to the size of the tip and the energy spread of the 
electron beam, respectively [1–3]. Similarly, the details of the electric 
field are essential to understand both the field evaporation process from 
a needle-shaped specimen and the trajectory of the ions to the detector 
during atom probe tomography and therefore to improve the fidelity of 
the reconstruction of the three-dimensional atomic positions in the 
sample [4]. In a further example, a knowledge of the internal and stray 
fields of electronic and spintronic devices is important to understand 
their operating principles and failure mechanisms [5–7].

Different transmission electron microscopy (TEM) techniques [8,9] 
can be used to obtain electron optical phase information about a sample, 

in order to visualize the electromagnetic fields within and around it. For 
a non-magnetic sample, the fields are purely electrostatic. An electro
static (vector) field can equivalently be represented by the gradient of 
the corresponding (scalar) electrostatic potential. Here, we consider two 
TEM techniques: electron holography and four-dimensional scanning 
TEM (4D-STEM), which usually involve the use of parallel and scanned 
convergent illumination, respectively. There are many different modes 
of each technique. For electron holography, they include in-line and 
off-axis electron holography [10–17]. For 4D-STEM, they include 
(annular) bright-field ((A)BF) and annular dark-field (ADF) approaches 
[8,9,18,19], as well as differential phase contrast (DPC) STEM [8,20–26] 
and electron ptychography [27–30].

For electron holography, we focus on the TEM mode of off-axis 
electron holography (OAEH), which allows for quantitative analysis 
based on rigorous theory [12]. OAEH is a well-established TEM tech
nique for measuring potentials and fields within and outside materials 
with nanometre or atomic spatial resolution [10,11,26]. An electrostatic 
biprism, which is typically located below the specimen, is used to bend 
two parts of the electron wave in order to overlap their wavefronts in the 
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image plane to produce an electron hologram. The hologram is used to 
record an interference pattern formed by an object wave passing 
through the specimen and a reference wave passing through an adjacent 
region of vacuum. The amplitude and phase of the exit electron wave 
from the sample can be retrieved from the hologram. For a thin, weakly 
diffracting sample, the phase records the projected electrostatic poten
tial (scalar). The gradient (differential) of the phase can then be calcu
lated numerically to determine the components of the projected in-plane 
electric field (vector).

For 4D-STEM, we focus on DPC-STEM [20–26]. DPC-STEM has been 
used to directly measure the gradient (differential) of the phase by 
measuring the deflection of a convergent electron beam with respect to 
its direction when the sample is absent. This deflection directly repre
sents the in-plane component of the projected electric field (vector) and 
is captured conveniently in the far field or, equivalently, in the 
diffraction plane of the projection lens of the TEM column [24,25], 
where a convergent beam electron diffraction (CBED) pattern is formed. 
The CBED pattern can be recorded fully and its centre of mass (COM) 
computed digitally or, more conventionally, a segmented detector can 
be used [20,21,24–26], for example by subtracting signals recorded 
from opposite segments when a four-quadrant detector is used. With the 
recent development of fast pixelated detectors, 4D-STEM has been 
widely adopted for measuring electromagnetic fields [31–33]. The 
ability to record full CBED patterns enables techniques that make use of 
their details and broad range of spatial frequencies [34,35], such as 
ptychography [27,30], to be used to extract the phase of the sample 
transmission function. The phase can also be obtained by integration (i. 
e., calculation of the inverse gradient) of a measured DPC-STEM dataset. 
This approach is referred to as integrated differential phase contrast 
STEM (iDPC-STEM) [24,25,33]. When a camera is used so that the COM 
of a full CBED pattern is computed, then (i)DPC-STEM can be referred to 
as (i)COM-STEM [24,25,33].

In the present work, we report a quantitative comparison of long- 
range electrostatic field and potential measurements recorded from 
the same specimen using OAEH and 4D-STEM in DPC-STEM mode 
(making use of a camera to compute the COM directly). Both techniques 
are used to measure the projected electrostatic potential and projected 

in-plane electric field in vacuum around electrically-biased colinear 
conducting needles. Differences between the results obtained using the 
two techniques are investigated thoroughly. A comparison of the mea
surements with a theoretical model based on analytical expressions for 
the electrostatic potential and electric field of a line charge is used to 
establish that a perturbed reference wave (PRW) effect in OAEH is pri
marily responsible for the discrepancy between the techniques. The 
analysis makes use of a model-based iterative reconstruction algorithm 
(MBIR) to determine the charge distribution in the needle-shaped sam
ple. The study of fields and potentials in vacuum allows the effects of 
dynamical diffraction in the specimen to be avoided. The results illus
trate both the advantages of using electron holography and 4D-STEM 
when measuring long-range electric fields and the need to compare re
sults obtained using complementary techniques to understand whether 
artefacts are present in such measurements.

2. Experimental details

Two Au needles were prepared by electrochemical etching Au wires 
of length ~1 cm and diameter 25 μm in an electrochemical etching 
machine (ElectroPointer, Simplex Scientific). A DC voltage of 4 V was 
used to apply an electric current through each wire in an electrolyte 
solution comprising a 50:50 mixture of 30 % HCl and ethanol. The two 
Au wires, whose tips had been etched to have diameters of below 100 
nm, were loaded into a Nanofactory STM-TEM specimen holder such 
that they were separated by a distance of ~200 nm, as shown in Fig. 1
(a). A bias of +50 V was applied to the lower needle, while the upper 
needle was grounded (Fig. 1(b)).

4D-STEM data were recorded on an FEI Titan G2 80–200 Chem
iSTEM equipped with a Schottky-type high brightness electron gun and a 
probe Cs corrector (CEOS DCOR) [36]. The microscope was aligned in 
nanobeam diffraction mode with a convergence semi-angle (CSA) of 3.5 
mrad. The electron beam was scanned across the needles with a dwell 
time of 1 ms and CBED patterns were recorded using an Electron Mi
croscope Pixel Array Detector (EMPAD), as shown in Fig.1(c). A camera 
length of 3.5 m was used to maximize the beam deflection, in order to 
achieve high sensitivity for measuring shifts of the CBED patterns. The 

Fig. 1. Experimental setup for 4D-STEM and OAEH measurements of electrically-biased colinear Au needles. (a) ADF-STEM image of two Au needles facing each 
other in a TEM specimen holder. (b) Magnified image of the tips of the needles, which have a head-to-head separation of 200 nm. (c) Schematic diagram of the 4D- 
STEM configuration, with a convergent electron beam scanning across the two needles. The CBED patterns are recorded in the back focal plane, which is equivalent to 
the far field. (d) Schematic diagram of the OAEH configuration, with a parallel electron beam illuminating the two needles. A biprism is located in the projection 
system. The hologram is recorded in the image plane.
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diameter of the full bright field disk (49 pixels) was slightly larger than 
1/3 of the size of the detection area of the EMPAD (128 pixels). In order 
to extract only the projected electrostatic potential and electric field and 
to eliminate the effects of the stray field of the needles, reference 
4D-STEM data were recorded by scanning the electron beam across the 
needles with a bias voltage of 0 V. The COM positions from the reference 
data were subtracted from data recorded with a voltage applied between 
the needles.

OAEH was performed on an FEI Titan G2 60–300 TEM equipped with 
a Schottky-type high brightness electron gun, an image Cs corrector and 
two electron biprisms [37]. Electron holograms were recorded at an 
accelerating voltage of 300 kV in Lorentz mode with a large field of view 
(FOV) using a Gatan K2-IS direct electron detection camera (Fig. 1(d)). 
The biprism voltage was varied between 70 and 280 V. Electron holo
grams were recorded using an acquisition time of 8 s with a fringe 
contrast in vacuum of 45 % for a biprism voltage of 140 V. Vacuum 
reference holograms were recorded for 8 s from a vacuum region and 
used to remove distortions associated with the imaging and recording 
systems of the microscope. The beam intensity was adjusted so that a 
dose rate of 10 electrons per pixel per second (eps) could be achieved 
using the K2 camera. In order to eliminate the contribution to the 
recorded phase shift from the mean inner potential of the needles, phase 

images recorded with different bias voltages applied to the needle (e.g., 
one at +50 V and the other at 0 V) were subtracted from each other. For 
reconstruction, each hologram recorded with a bias voltage of +50 V 
was shifted manually to align it with respect to the corresponding ho
logram recorded with a bias voltage of 0 V, as the positions of the 
needles moved across the detector due to deflection of the electron beam 
by the applied voltage. The two resulting complex images were divided 
to obtain the amplitude ratio and the phase difference between them.

For each experiment, the magnification was adjusted so that the FOV 
was ~1.5 μm. The positions of the needles were kept unchanged in the 
specimen holder during transfer and measurements on both 
microscopes.

3. Theoretical basis

3.1. OAEH: theory of electrostatic potential and electric field 
measurement

For OAEH, the imaging procedure can be divided into two steps: 
hologram acquisition and amplitude and phase recovery [10,11,26]. 
The electron wave function in the detector plane ψO

D(r) is, in this 

Fig. 2. Schematic illustrations of the underlying theories of OAEH and 4D-STEM. The optical paths are not to scale. (a, b) TEM configuration for OAEH. Two 
consecutive FTs take the exit wave from the sample and the reference wave, first to the back focal plane of the objective lens and then to the image plane. (c, d) 4D- 
STEM configuration. A first FT forms a convergent probe, while a second FT takes the exit wave of the sample to the far field. In (a), the sample is electrically neutral. 
In (b), there is a long-range electric field outside the sample. (c) Electron optical setup for 4D-STEM via DPC. (d) Recording of a CBED pattern on a pixelated detector, 
from which the COM shift vector is computed for DPC.

J. Jo et al.                                                                                                                                                                                                                                        Ultramicroscopy 277 (2025) 114218 

3 



configuration, the electron wave function in the image plane of the 
objective lens (Figs. 2(a) and (b)). The lens acts to Fourier transform (FT) 
the exit wave function of the sample ψO(r) from the object plane to the 
back focal plane. Here, it is cut off by a lens aperture A(k) and modified 
by aberrations χ(k), yielding ψO

BFP(k) = F {ψO(r)}(k)A(k)e− iχ(k), where 

the operator F represents a FT, which is defined as F {f(r)}(k) =
∫
∫∞

− ∞ 

f(r)e− 2πik⋅rd2r and its inverse as F − 1{f(k)}(r) =
∫
∫∞

− ∞

f(k)e2πik⋅rd2k. If the 

biprism is switched off, then another FT brings the electron wave 
function from the back focal plane to the image plane, as illustrated in 
Fig. 2(a), yielding ψO

D(r) = F {ψO
BFP(k)}(r). In this paper, we follow the 

convention in Ref. [38], which describes the process of image formation 
in terms of two direct Fourier transforms. The object wave function at 
the detector ψO

D(r) can be expressed in the form 

ψO
D(r) = F

{
F
{

ψO(r)
}
(k)⋅A(k)e− iχ(k)}(r)

=
(
ψO(− rʹ) ∗F

{
A(k)e− iχ(k)}(rʹ)

)
(r), (1) 

where r = (x, y) and k = (kx, ky) are two-dimensional vectors in the 
object (and image) and back focal planes, respectively, the symbol ∗
refers to convolution and the FT property F {F {f(r)}(k)}(r) = f(− r)
has been applied. For convenience, by ignoring the magnification factor 
[38], the final electron wave function expressions for the object and 
reference waves at the detector plane take the forms 

ψO
D(r) =

( (
A0(− rʹ)eiφ(− rʹ)) ∗F

{
A(k)e− iχ(k)}(rʹ)

)
(r) (2a) 

ψR
D(r) =

(
1 ∗F

{
A(k)e− iχ(k)}(rʹ)

)
(r), (2b) 

where A0(r) and φ(r) are the amplitude and phase of the sample exit 
wave function ψO(r) = A0(r)eiφ(r) (Eq. (2a)) and 1 denotes the reference 
plane wave function ψR(r) that passes through vacuum (Eq. (2b)), 
respectively, as shown in Fig. 2(a). Since the reference wave is assumed 
to be an ideal plane wave here, an interference distance D between the 
object and reference waves does not need to be included in Eq. (2b). It 
should be noted that the reference wave and object wave have switched 
places at the detector plane, as the lens introduces an inversion.

For an ideal lens with no aberrations (i.e., χ(k) = 0) and an infinitely 
large aperture (i.e., A(k) = 1), F {A(k)e− iχ(k)}(rʹ) = F {1}(ŕ ) = δ(rʹ)
and Eq. (2) simplifies to 

ψO
D(r) =

(
ψO(− rʹ) ∗ δ(rʹ)

)
(r) = ψO(− r) = A0(− r)eiφ(− r) (3a) 

ψR
D(r) =

(
ψR(− rʹ) ∗ δ(rʹ)

)
(r) = ψR(− r) = 1. (3b) 

The image of the object intensity I(r) = |ψO
D(r)|

2
= ψO

D(r)ψO
D(r) =

|A0(− r)|2 measured on the detector is just the amplitude of the sample 
exit wave squared, which carries little or no information for a thin 
sample, while the phase is lost. This is the well-known phase problem.

In contrast, when the biprism is switched on, the two parts of the 
electron wave are tilted towards each other by deflection vectors q2 and −
q
2, causing them to interfere to form a new wave function ψD(r) in the 
detector plane, which is a mixture of the object and reference waves, in 
the form 

ψD(r) = ψO
D(r)e

2πiq2⋅r + ψR
D(r)e

− 2πiq2⋅r. (4) 

The intensity of the final wave function I(r) is the modulus squared of 
ψD(r) and is referred to as a hologram. It takes the general form 

I(r) = ψD(r)ψD(r)

=
⃒
⃒ψR

D(r)
⃒
⃒2 +

⃒
⃒ψO

D(r)
⃒
⃒2 + ψO

D(r)ψR
D(r)e

2πiq⋅r + ψO
D(r)ψR

D(r)e
− 2πiq⋅r

(5) 

where the tilts of the object and reference waves by the biprism are 
specified by two-dimensional reciprocal space vectors q2 and − q

2. For an 
ideal lens, by making use of Eq. (3), this expression simplifies to 

I(r) = ψD(r)ψD(r) = 1 + A 2
0 (− r) + 2A0(− r)cos(2πq⋅r+φ(− r)), (6) 

which now carries information about both the amplitude and the phase 
of the sample exit electron wave ψO(r) = A0(r)eiφ(r), unlike the intensity 
of the wave function given by Eq. (3).

Recovery of the amplitude A0(r) and phase φ(r) of the exit electron 
wave function ψO(r) from the hologram I(r) can be described by starting 
from the general expression in Eq. (5). An inverse Fourier transform 
(IFT) of Eq. (5) yields the elegant expression 

F
− 1{I(r)}(k) = F

− 1
{⃒
⃒ψR

D(r)
⃒
⃒2
}
(k) + F

− 1
{⃒
⃒ψO

D(r)
⃒
⃒2
}
(k)

+ F
− 1{ψO

D(r)ψR
D(r)

}
(k + q) + F

− 1{ψO
D(r)ψR

D
}
(k − q),

(7) 

where the FT shift property F {f(r)e2πiq⋅ r}(k) = F {f(r)}(k − q) has 
been used. By making use of the property of convolution that 
(1 ∗F {f(k)}(ŕ ))(r) = f(0), the reference wave (Eq. (2b)) becomes 
ψR

D(r) = (1 ∗F {A(k)e− iχ(k)}(ŕ ))(r) = A(0)e− iχ(0) = 1, as the aperture is 
transparent at the origin (A(0) = 1), while the aberration function is not 
included, as χ(0) = 0. When combined with Eq. (7), the final expression 
becomes 

F
− 1{I(r)}(k) = δ(k) + F

− 1
{⃒
⃒ψO

D(r)
⃒
⃒2
}
(k) + F

− 1{ψO
D(r)

}
(k + q)

+F
− 1{ψO

D(r)
}
(k − q).

(8) 

The first two terms in Eq. (8) are IFTs of a reference plane wave and a 
bright-field image of the specimen ITEM(r) = |ψO

D(− r)|2 centered at the 
origin of reciprocal space, respectively. The last two terms are the IFT of 
the object wave function at the detector centered at k = − q and the IFT 
of the complex conjugate of the object wave function at the detector 
centered at k = q, corresponding to two sidebands (SBs) in reciprocal 
space. The reason for starting with an IFT rather than a FT in Eq. (7)
becomes clear in the next step. Combining the object wave function at 
the detector ψO

D(r) given by Eq. (1) with Eq. (8) yields the expression 

F
− 1{I(r)}(k) = δ(k) + F

{
ITEM(r)

}
(k)

+F
{

ψO(r)
}
(k + q)⋅A(k + q)e− iχ(k+q)

+F
{

ψO(r)
}
(k − q)⋅A(k − q)e− iχ(k− q),

(9) 

where the convolution theorem in the third and fourth terms and 
F − 1 {f(− r)}(k) = F {f(r)}(k) have been applied and inversion of the 
object has been eliminated. The second term in Eq. (9) is a FT of a 
regular TEM image. In the weak phase object approximation (φ(r)≪1), 
F {ITEM(r)}(k) ≈ 2A(k)eiχodd(k)(cosχev(k)⋅ 
F {A0(r)}(k) +sinχev(k)⋅F {φ(r)}(k)) [8,9,18], where χev(k) = (χ(k) +
χ(− k))/2 and χodd(k) = (χ(k) − χ(− k))/2 are even and odd parts of the 
aberration function χ(k), respectively. This pattern is limited by the lens 
aperture A(k).

The full exit electron wave function ψO(r) = A0(r)eiφ(r), together 
with its amplitude and phase, can now be retrieved by using a SB aper
ture, e.g., ASB(k+q) centered at k = − q. The resulting expression takes 
the form 

F
− 1{I(r)}(k)⋅ASB(k+q) = F

{
ψO(r)

}
(k+q)⋅ASB(k+q)A(k+q)e− iχ(k+q).

(10) 

The remaining terms are no longer present because the SB aperture 
size is typically chosen such that there is no information from 
F {ITEM(r)}(k) and F {ψO(r)}(k − q) within ASB(k + q). If this criterion 
is not fulfilled, then there will be mixing of information between the 
central and SBs. The voltage applied to the biprism, which results in the 
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tilt vector q, plays a crucial role, together with the two apertures. By 
shifting the pattern in Eq. (9) by q back to the origin and applying 
another IFT, the final SB recovery formula is obtained as follows: 

where the convolution theorem has been applied once more. The 
resulting complex wave function ψSB(r), which has been obtained from 
the recorded hologram I(r) with ψSB(r) = F

− 1{F
− 1{I(r)}(k −

q)⋅ASB(k)}(r), is directly interpretable via Eq. (11).
For an aberration-corrected microscope, χ(k) ≈ 0 and the expression 

in Eq. (11) takes the form ψSB(r) =

(A0(ŕ )eiφ(rʹ)∗ F − 1{ASB(k)A(k)}(ŕ ))(r), which is a low-pass-filtered 
version of the sample exit wave function ψO(r) = A0(r)eiφ(r), where 
the highest cut-off frequency is determined by the size of the smaller of 
the two apertures, i.e., the SB aperture ASB(k) and the lens aperture A(k). 
In an ideal case, if both apertures are of infinite size, reconstruction 
yields the exit electron wave function ψSB(r) = A0(r)eiφ(r) directly. If the 
aberrations are known, then it is straightforward to multiply 
F {ψSB(r)}(k) by eiχ(k) to correct for them during post processing.

For a thin sample, the projected electrostatic potential Vp(r) affects 
the phase of the passing electron wave [8,9,19] (a plane wave in TEM 
mode) via its transmission function T(r) = eiφ(r) directly. For a 
non-magnetic sample φ(r) = σVp(r) = σ

∫

z
V(r, z)dz, where σ = 2πmeλ /

h2 [19,25] and e, m and λ are the charge, relativistic mass, and relativ
istic wavelength of the electron, respectively. The question of when a 
sample can be considered thin is nontrivial [39]. At close-to-atomic 
spatial resolution or in the presence of strong diffraction contrast, only 
a few monolayers of a crystalline structure can be considered as thin, 
whereas for amorphous-like samples the thickness can be considerably 
larger. At medium spatial resolution, the approximation can often be 
extended to slowly-varying strong phase objects.

According to Gauss’ law (one of Maxwell’s equations), the projected 
electric field Ep(r) = (Ex(r),Ey(r)), which is a conservative vector field, 
is the negative of the gradient of the projected electrostatic potential 
Vp(r), according to the expression 

Ep(r) = − ∇Vp(r). (12) 

Therefore, after reconstruction of the phase using Eq. (10) or Eq. 
(11), the projected electric field vector can be obtained straightfor
wardly by applying the gradient operator ∇.

3.2. 4D-STEM via DPC: theory of electrostatic potential and electric field 
measurement

For STEM, the imaging procedure involves 4D-STEM data acquisition 
and the determination of interpretable output via DPC mode. In this 
configuration (Figs. 2(c) and (d)), for a certain position of the probe rp at 
the sample the electron wave function in the detector plane ψD(k, rp) is 
a CBED pattern in the far field. The intensity of the electron wave 
function I(k, rp) = |ψD(k, rp)|

2, which takes the form of a two- 
dimensional CBED pattern, can be recorded either in full using a cam
era [31,32,34] or by using larger-segment-size detectors [25,33]. As the 
probe positions are specified in two-dimensional space, in total a 4D 
dataset is recorded: hence, the term 4D-STEM. Any type of STEM de
tector can be constructed virtually by post processing a dataset recorded 
using a camera.

As mentioned above, different techniques can be used to extract the 
projected electrostatic potential field of the sample from a 4D-STEM 
dataset. Here, we compute the COM of the CBED pattern to obtain a 

DPC-STEM vector image [25], according to the expressions 

IDPC( rp
)
= ICOM( rp

)
=

∫ ∫∞

− ∞

k I
(
k, rp

)
d2k (13a) 

(
ICOMx

(
rp
)
, ICOMy

(
rp
))

=

⎛

⎝
∫ ∫∞

− ∞

kx I
(
k, rp

)
d2k,

∫ ∫∞

− ∞

ky I
(
k, rp

)
d2k

⎞

⎠.

(13b) 

In practice, the computation is performed over the camera pixels, 
kp = (kpx, kpy) in discretized detector plane space k = (kx, ky) by using 
finite sums instead of integrals, for example in the form ICOMx (rp) =

∑

ky

∑

kx

kpx I(kp, rp). This equation should include a normalization factor, 

such as 
∫
∫∞

− ∞

I(k, rp) d2k in Eq. (13). In a theoretical expression, 
∫
∫∞

− ∞

I(k,rp)

d2k =
∫
∫∞

− ∞

|ψD(k, rp)|
2d2k = 1, as the quantum mechanical electron 

wave function must be normalized. It should also be noted that, unlike in 
full 4D-STEM, only two values, ICOMx (rp) and ICOMy (rp), are obtained for 
each probe position to create two DPC-STEM component images.

For a thin sample [39], the projected electric field can be obtained 
directly without any further approximations. The DPC-STEM vector 
image described by Eq. (13) can be proven to reduce to the expression 
[24,25] 

IDPC( rp
)
= ICOM( rp

)
=

1
2π

(
|ψ in(r)|

2★∇φ(r)
)(

rp
)
, (14) 

where ★ denotes cross correlation, ψ in(r) is the input convergent elec
tron wave at the entrance of the sample, the focused probe can be placed 
anywhere in the sample plane rp and φ(r) = σVp(r) = σ

∫

z
V(r, z)dz is, as 

before, the phase of the transmission function of the sample T(r) = eiφ(r). 
As each CBED pattern is measured in the far field, the forward relation 
between the input electron wave, the sample transmission function and 
the electron wave at the detector plane can be specified by using a FT 
[40] in the form 

ψD
(
k, rp

)
= F

{
ψ in(r) T

(
r+ rp

)}
(k) = F

{
ψ in(r) eiφ(r+rp)

}
(k). (15) 

In combination with Eq. (13), this relation can be used to derive Eq. 
(14) [25].

The final COM image ICOM(rp) is expressed as a cross correlation of 
the electron probe at the specimen and the gradient, or differential, of the 
phase of the transmission function of the specimen: hence, the name 
differential phase contrast (DPC) STEM - here IDPC(rp). For a non-magnetic 
sample, recalling Eq. (12), Eq. (14) can be written in the form 

IDPC( rp
)
= ICOM( rp

)
=

σ
2π

(
|ψ in(r)|

2★
(
− Ep(r)

))(
rp
)
, (16) 

ψSB(r) = F
− 1{

F
− 1{I(r)}(k − q)⋅ASB(k)

}
(r)

= F
− 1{

F
{

ψO(r)
}
(k)ASB(k)A(k)e− iχ(k)}(r) =

(
ψO(rʹ)∗ F

− 1{ASB(k)A(k)e− iχ(k)}(rʹ)
)
(r)

=
(
A0(rʹ)eiφ(rʹ)∗ F

− 1{ASB(k)A(k)e− iχ(k)}(rʹ)
)
(r),

(11) 
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showing that the COM signal is related linearly to the projected electric 
field Ep(r).

If the probe intensity |ψ in(r)|
2 were to take the form of an ideal Dirac 

delta function, then the DPC-STEM image expression would reduce to 
IDPC(rp) = − σ

2πEp(rp), becoming directly proportional to the projected 
electric field of the sample. For a well-tuned system, the probe wave 
function is given by the expression ψ in(r) = F {A(k)e− iχ(k)}(r), where 
A(k) and χ(k) are the aperture function and aberration function of the 
condenser lens system, respectively [19,25]. If the microscope is probe 
corrected, such that χ(k) ≈ 0, then the probe wave function becomes an 
Airy function, which is a good approximation to a Dirac delta function. If 
the aberrations of the probe are known, then they can be corrected by 
Fourier transforming Eq. (16) to yield 

F
{
IDPC( rp

)}(
kp
)
= −

σ
2πF

{
|ψ in(r)|

2
}(

kp
)
⋅F
{
Ep(r)

}(
kp
)
, (17) 

followed by division by the transfer function CTF(k) =
− σ
2πF {|ψ in(r)|

2
}(k) [33]. This approach is possible as, for most 

well-behaved probes, CTF(k) is positive definite up to the STEM cut-off 
frequency given by the CSA of the beam [18,25].

Eq. (16) can be related to the classical view of the DPC imaging 
process [25]. When no sample is present, the electron continues along its 
original path, whereas the projected in-plane electric field of a sample 
Ep(r) changes its trajectory due to an in-plane Lorentz force component 
F(r) = − eEp(r) = e∇Vp(r). The angle of deflection, or equivalently the 
shift of the electron on the detector, is a direct measurement of this force 
and hence of the projected in-plane electric field. Quantum mechani
cally, the situation can be described in terms of the average angle of the 
electron deflection (see Fig. 2(c)), or equivalently in terms of the average 
position of the electron on the detector, as described by the COM ac
cording to Eq. (13).

Unlike in OAEH, for which a direct measurement allows the pro
jected electrostatic potential Vp(r) to be measured and the electric field 
Ep(r) to be obtained via Eq. (12), the opposite situation applies in 4D- 
STEM via the DPC approach. The initial measurement provides the 
projected electric field first, according to Eq. (16). The projected elec
trostatic potential can then be obtained by inverting the gradient in Eq. 
(12). In practice, iDPC-STEM [24,25,33] uses Eq. (12) as guidance and 
applies the inverse gradient or direct integration to a measured 
DPC-STEM dataset to perform iDPC-STEM. The inverse gradient can be 
computed in the Fourier domain. Given that a vector DPC-STEM image 
IDPC(rp) is the gradient of a scalar iDPC-STEM image IiDPC(rp), where 
IDPC(rp) = ∇IiDPC(rp), then by Fourier transforming 

F
{
IDPC( rp

)}(
kp
)
= F

{
∇IiDPC( rp

)}(
kp
)
= 2πikp⋅F

{
IiDPC( rp

)}(
kp
)
,

(18) 

where the property of the FT F {∇f(r)} = 2πik⋅F {f(r)} has been 
applied. For kp ∕= 0 

F
{
IiDPC( rp

)}(
kp
)
=

kp⋅F
{
IDPC( rp

)}(
kp
)

2πi
⃒
⃒kp
⃒
⃒2

=
σ
2πF

{
|ψ in(r)|

2
}(

kp
)
⋅F
{
Vp(r)

}(
kp
)
, (19) 

where the right side has been obtained by inserting Eq. (14) in the form 
IDPC(rp) = σ

2π (|ψ in(r)|
2★∇Vp(r))(rp). An IFT results in the expression 

[24,25] 

IiDPC( rp
)
= F

− 1

{
kp⋅F

{
IDPC( rp

)}(
kp
)

2πi
⃒
⃒kp
⃒
⃒2

}
(
rp
)
=

σ
2π

(
|ψ in(r)|

2★Vp(r)
)(

rp
)
,

(20) 

which demonstrates a linear relationship between the iDPC-STEM image 

IiDPC(rp) (here obtained using integrated COM (iCOM), therefore also 
referred to as IiCOM(rp)), and the projected electrostatic potential Vp(r). 
In general, the left side of Eq. (20) can be applied to DPC-STEM images 
obtained using segmented detectors [24,25], yielding the same result for 
Vp(r), albeit cross-correlated with a different point spread function 
instead of |ψ in(r)|

2. For COM, if the probe were a Dirac delta function, 
the expression for the iDPC-STEM image would reduce to IiDPC(rp) =

σ
2πVp(rp), becoming directly proportional to the projected electrostatic 
potential of the sample. It should be noted that, as IiDPC(rp) represents 
the projected electrostatic potential, its value at kp = 0 can be chosen 
freely as it represents the reference point of the electrostatic potential 
field, which also can be chosen freely. If the aberrations of the probe are 
known then, just as for the electric field, they can be corrected by Fourier 
transforming Eq. (20) to give 

F
{
IiDPC( rp

)}(
kp
)
=

σ
2πF

{
|ψ in(r)|

2
}(

kp
)
⋅F
{
Vp(r)

}(
kp
)
, (21) 

followed by division by the contrast transfer function CTF(k) =

σ
2πF {|ψ in(r)|

2
}(k), which is possible [33] because for most probes ψ in(r)

the CTF(k) is a well-behaved positive definite function.

3.3. Model for the projected electrostatic potential and electric field of a 
needle-shaped sample

The projected electrostatic potential Vp(r) and electric field Ep(r) of 
an electrically-biased conducting needle-shaped sample can be approx
imated by a simple analytical model for a line charge distribution. 
Analytical expressions for (a) the electrostatic potential in the z = 0 
plane and (b) the associated projected electrostatic potential Vp(r) =
Vp(x, y) of a line of constant charge density in the perpendicular di
rection z are given by the expressions 

V(x,y,0)=
K

4πϵ0

[

ln

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a+y)2
+x2

√

+a+y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 +y2

√
+y

)

−
a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x+xD)
2
+(y+yD)

2
√

]

(22a) 

Vp(x,y)=
K

4πϵ0

[
− (a+y)ln

(
(a+y)2

+x2)+yln
(
x2+y2)+2a

+2xtan− 1
(y

x

)
− 2xtan− 1

(a+y
x

)
+aln

(
(x+xD)

2
+(y+yD)

2)
]
,

(22b) 

where K(y) = dQ/dy = const is the charge density of a segment of length 
a lying between (0, − a) and (0, 0), with a compensating charge at an 
arbitrarily far position (xD, yD) to ensure overall charge neutrality and 
the convergence of Vp(r) [43,46,47]. Two conducting lines of constant 
charge density with opposite signs can be described by rotating and 
displacing the coordinate system shown in Eq. (22). The electric field 
can then be obtained as before by using Eq. (12).

3.4. Determination of the charge density of a needle-shaped sample from 
the projected electrostatic potential using model-based iterative 
reconstruction

In addition to the electrostatic potential V(r) and electric field E(r) in 
three-dimensional space r = (x, y, z), the fundamental quantity that is 
required to produce the potential and field is the electric charge Q. When 
distributed in space, it is better represented by the charge density dis
tribution ρ(r), where Q =

∫ ∫ ∫
rρ(r)d3r. This description can include 

point charges represented by Dirac delta functions, e.g., to describe the 
atomic core charge ρ(r) = Zeδ(r) of each atom with atomic number Z, 
where the total charge Q =

∫ ∫ ∫∞
− ∞ Zeδ(r)d3r = Ze. In the model 

introduced in the previous section, a line charge density distribution 
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K(y) with Q =

∫0

− a

K(y)dy is used as a simplified one-dimensional 

description. The corresponding electrostatic potential field in three- 
dimensional space is given via the Coulomb potential law, which can 
be expressed in terms of the charge density distribution in the form 

V(r) =
1

4πϵ0

∫ ∫ ∫

rʹ

ρ(rʹ)
|r − rʹ|

d3rʹ, (23) 

where ŕ  runs over the charge-occupied volume and the reference point 
for the potential is chosen at infinity, such that V(r→∞) = 0.

By using this relation, MBIR can be used to retrieve the charge 
density distribution of a needle-shaped sample from the corresponding 
electrostatic potential distribution. MBIR can be used to retrieve the 
distribution of either magnetic moments or charges in a specimen from 
an electron optical phase image [48,49]. Here, only the electrostatic 
contribution is considered. MBIR allows the charge density distribution 

ρ(r) to be mapped via Vp(x, y) =
∫∞

− ∞

V(r)dz onto a set of measured 

projected potentials by a function F: Rn↦Rm, which defines a forward 
model with n = 3NxNyNz retrieval targets and m = NbNuNv measure
ments, where Nx, Ny and Nz are the numbers of grid points along the x, y 
and z directions, Nu and Nv are the numbers of pixels of the measured 
projected potential with two-dimensional spatial coordinates u and v, 
and Nb is the number of measurements [43].

In terms of the forward model F(), which includes the relationship 
between ρ(r) and V(r) given by Eq. (23) and the projection along the z 

direction, Vp(x, y) =
∫∞

− ∞

V(r)dz can be expressed by the vectorization 

Vp(x, y) = F(ρ(r)) →vectorization Y = F(X), (24) 

where X and Y represent the vectorized form of ρ(r) and the vectorized 
concatenation of all of the pixels in measured images of VM

p (x, y), 
respectively. The goal is to retrieve ρ(r) from VM

p (x, y) by solving an 
inverse problem. However, this inverse problem is ill-posed and does not 
guarantee the existence of a unique solution, or even a single solution. 
The solution is typically approximated by solving the least squares 
minimization of a cost function of the form 

C(X)≡‖ F(X) − Y‖2 + Rλ. (25) 

The cost function C(X) can be minimized iteratively by mapping a 
solution ρ(r) (or X) onto a corresponding VM

p (x, y) (or Y) using the 
forward model F(X) until a best fit for ρ(r) is found, such that Vp(x, y) is 
the closest possible approximation to VM

p (x, y). The a priori information 
that is specified about the sample and imaging conditions can include a 
known region where charges can exist and regions where an experi
mental phase image is trustworthy. A Tikhonov regularisator can be 
used to enforce physical or mathematical constraints [48,50]. Here, we 
use a 0th order Tikhonov regularisator, which takes the form of a simple 
Euclidean norm 

Rλ = λc‖ X‖2, (26) 

where the value of λc is used to find a balance between compliance with 
the measurements (the first term in Eq. (25)) and adherence to the 
regularisation (the second term in Eq. (25)). The MBIR approach can 
also consider the influence of charges that lie outside the FOV by adding 
a fictitious charge density distribution in a region of buffer pixels around 
the border of each experimental image, in order to improve the reli
ability of the reconstruction of the charge density inside the FOV.

4. Experimental results

In this section, measurements of external electrostatic potentials and 
electric fields of electrically-biased conducting needles recorded using 
OAEH and 4D-STEM via DPC are presented. The results are compared 
between the two approaches (Section 4.1), as well as with a theoretical 
model of the fields (Sections 4.2 and 4.3) based on line charge segments. 
In addition, measurements of cumulative charge are presented (Section 
4.4) and the effects of biprism voltage and orientation are discussed 
(Section 4.5).

4.1. Comparison of projected electrostatic potential and electric field 
measurements recorded using OAEH and 4D-STEM via DPC

Experimental measurements of the projected electrostatic potential 
Vp(r) and electric field Ep(r) recorded from the electrically-biased Au 
needles using OAEH and 4D-STEM via DPC are compared with each 
other in Fig. 3. Physical quantities are obtained as explained in Section 
3. For OAEH, the projected electrostatic potential Vp(r) = φ(r)/σ is first 
obtained from the reconstructed phase. The electric field is then 
computed from its gradient, according to Eq. (12) (Section 3.1). For 4D- 
STEM, by measuring the COM shifts of the CBED patterns using a 
camera, the projected electric field is first obtained directly via DPC- 
STEM according to Eq. (14). An inverted gradient operation (i.e., vec
tor field integration) is then used to obtain the electrostatic potential 
field via iDPC-STEM, according to Eq. (20) (Section 3.2).

The coordinate system in Figs. 3(a) and (b) is chosen such that the 
Ey(r) component of the projected electric field Ep(r) = (Ex(r), Ey(r))
inferred from the electron holographic phase is aligned with the 
conductive needles (shown in grey), while the Ex(r) component is 
perpendicular to the needles. Suprisingly, the measurements show that 
the magnitudes of Vp(r) and Ep(r) are considerably smaller when 
measured using OAEH (Figs. 3(a) and (b)), when they are compared 
with 4D-STEM via DPC (Figs. 3(c) and (d)). Figs. 3(e) and (f) show line 
profiles plotted along the vertical (solid) and horizontal (dashed) di
rections. The line profiles were averaged over a width of 30 nm to in
crease the signal-to-noise ratio (SNR). They highlight significant 
discrepancies when Vp(r) and Ep(r) are measured directly using the two 
techniques. Although the projected electrostatic potential increases 
linearly along the line between the needles for both OAEH and 4D- 
STEM, it increases more rapidly for 4D-STEM than for OAEH (Fig. 3
(e)). In theory, the electrostatic potential should be constant half-way 
between the two needles. However, a deviation arises due to the 
slightly different shapes and sizes of the needles, their slight tilt with 
respect to the y axis and their slight misalignment in the x direction. 
Significantly, Fig. 3(f) shows that Ep(r) measured using 4D-STEM is 
larger by ~90 V when compared to that measured by OAEH in both 
directions. In order to better understand this discrepancy, we now pre
sent a comparison with the theoretical model of the electrostatic po
tential and electric field described in Section 3.3.

4.2. Comparison of measured projected electrostatic potential with the 
theoretical model

In this Section, the experimental measurements are compared with 
the projected electrostatic potential VTh

p (r) computed using a theoretical 
model based on line segments of constant charge density (see Section 
3.3). Figs. 4(a) and (b) show the projected electrostatic potential Vp(r)
measured using both 4D-STEM via DPC and OAEH, as described in 
Section 4.1 and shown in Figs. 3(c) and (a), respectively. Fig. 4 shows 
equally-spaced contour lines, which are plotted over different intensity 
ranges. The large spacing of the contour lines in Fig. 4(b) indicates that 
VOAEH

p (r) measured using OAEH is smaller than VDPC
p (r) measured using 
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Fig. 3. Electrostatic potential and electric field measurements from two electrically-biased Au needles for (a, b) OAEH and (c, d) 4D-STEM via DPC. (a, c) Projected 
electrostatic potentials. (b, d) Projected electric fields, with projected electric field lines superimposed. The xy plane is perpendicular to the electron beam direction. 
The needles are marked in grey. (e, f) Line profiles of the projected electrostatic potential and electric field along the arrows marked in (a-d). OAEH is shown in red 
and 4D-STEM in blue. The solid and dashed line profiles are recorded along the solid and dashed arrows in the figures.

Fig. 4. Projected electrostatic potential around the biased needles (shaded in grey) recorded using (a) 4D-STEM via DPC and (b) OAEH. (c) Cumulative charge profile 
measured along the blue contour marked in (b) (black curve) and calculated from a charge density map obtained using MBIR (green-dashed curve). The blue arrow 
shows the direction in which the box increases. The red line is a linear fit to the cumulative charge profile. The inset on the right shows segments of line charge 
density K and length a used for calculating the projected electrostatic potential using a theoretical model. The inset on the left shows electrostatic equipotential lines 
computed around the line charges in the specimen plane (z = 0). The contours of the actual needles are indicated with blue dashed lines. (d, e) Projected electrostatic 
potential determined from the theoretical model (d) without and (e) with the inclusion of the PRW effect. (f) Projected electrostatic potential determined from the 
reconstructed projected charge density obtained using MBIR.
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4D-STEM via DPC, which is shown in Fig. 4(a). It should be noted that 
the term Vp(r) represents the projected electrostatic potential in general, 
while VOAEH

p (r) and VDPC
p (r) represent specifically the projected electro

static potential measured experimentally using OAEH and 4D-STEM via 
DPC, respectively, while VTh

p (r) represents the projected electrostatic 
potential computed using a theoretical model according to Eq. (22b).

Interestingly, the difference between the OAEH and 4D-STEM mea
surements is not associated with an error in either approach. This point 
becomes evident when the results are compared to the theoretical model 
described in Section 3.3, which initially shows better agreement with 
the 4D-STEM via DPC than the OAEH measurements. In the theoretical 
calculation, the coordinates of the tips of the line segments are set to 
match the tips of the needles in the experimental images, as shown in 
Fig. 4(c). The inset to Fig. 4(c) shows a contour map of the electrostatic 
potential in the plane of the sample calculated from an analytical 
expression (Eq. (22a)) for two oppositely-charged lines, as shown 
schematically in Fig. 4(c). The fact that the equipotential surfaces 
around the line charges are nearly ellipsoids, which inherently resemble 
the shapes of the Au needles, confirms that the line segments generate a 
suitable solution for the electrostatic potential around the needles. A 
best-fitting theoretical model for VDPC

p (r) obtained from the 4D-STEM via 

DPC measurements was obtained based on Eq. (22b) by fitting the pa
rameters a and K in the region outside the needles, resulting in values of 
164 μm and 3.63 e/nm, respectively. Fig. 4(d) shows that the projected 
electrostatic potential VTh

p (r) calculated from the best-fitting theoretical 
model using Eq. (22b) closely matches VDPC

p (r) from the 4D-STEM 
measurements shown in Fig. 4(a).

In contrast, no amount of adjusting the model parameters a and K 
provided a good fit to the OAEH measurement shown in Fig. 4(b). 
Instead, the situation was resolved fully by subtracting a shifted image of 
the projected potential of the form VTh

p (r + D), fitted to VDPC
p (r) as dis

played in Fig. 4(d), in a direction perpendicular to the needle by a vector 
D = − Dxo, where D > 0 is an additional parameter representing the 
reference wave interference distance and 

VTh− PRW
p (r) = VTh

p (r) − VTh
p (r+D). (27) 

The new subtracted projected potential distribution VTh− PRW
p (r), 

which is shown in Fig. 4(e), agrees closely with the electrostatic po
tential VOAEH

p (r) measured using OAEH, which is shown in Fig. 4(b). This 
approach is required because of perturbation of the reference wave by 
the long-range electric field of the sample itself. Unlike for a neutral 
sample, the electrostatic potential field of the biased needle extends far 
into the vacuum, into the path of the reference wave (see the inset to 
Fig. 1(d) and Fig. 2(b)). The PRW then changes the phase recovered 
using OAEH [42–45].

At the position of the reference wave, the projected electrostatic 
potential is a shifted version of the projected electrostatic potential of 
the object Vp(r + D), centered at distance D on the other side of the 
optical axis. Instead of being planar, the reference wave is a shifted 
version of the sample exit electron wave function ψR(r) = ψO(r + D). 
The new reference wave at the detector plane (see Eq. (3b)) is 

ψR
D(r) = F

{
F
{

ψR(r)
}
(k)⋅A(k)e− iχ(k)}(r)

= F
{

F
{

ψ0(r + D)
}
(k)⋅A(k)e− iχ(k)}(r)

=
(
ψ0(− rʹ + D) ∗ F

{
A(k)e− iχ(k)}(rʹ)

)
(r)́

=
( (

A0(− rʹ + D)eiφ(− rʹ+D)
)
∗ F

{
A(k)e− iχ(k)}(rʹ)

)
(r).

(28) 

The positions of the object and vacuum reference waves are shown in 
Fig. 5. The reference wave interference distance D and the shadow width 
of the biprism S were measured to be 2.8 μm and 0.16 μm, respectively, 
in our microscope setup at a biprism voltage of 140 V. The reference 
wave passes through vacuum on the left side of the needles, which re
sults in a negative sign in the equation D = − Dxo.

The procedure described in Section 3.1 can be followed with the 
equations updated using Eq. (28). For an ideal lens, the hologram (see 
Eq. (6)) can be described by the expression 

I(r) = A 2
0 (− r + D) + A 2

0 (− r)
+2A0(− r)A0(− r + D)cos(2πq⋅r + (φ(− r) − φ(− r + D))),

(29) 

in which both the amplitude and the phase are modified. Starting from 
Eq. (7) and applying a q shift and a SB aperture ASB(k), the recon
struction formula becomes  

where Eq. (1), Eq. (28) and the FT property F {F {f(r)}(k)}(r) = f(− r)
have been used. If the reference wave ψR(r) were ψR(r) = 1 instead of 
ψR(r) = ψ0(r + D), then there would be no reference wave perturbation 
and Eq. (30) would reduce to Eq. (11).

In order to further interpret Eq. (30), it can be assumed that ASB(k) is 
smaller than A(k) and the aberration function χ(k) ≈ 0, such that 
F − 1{A(k)e− iχ(k)}(r) ≈ δ(r) closely resembles a delta function. The 
simplified expression 

ψSB(r) ≈
(
ψ0(rʹ)ψ0(rʹ + D)∗ F

− 1{ASB(k)}(rʹ)
)
(r)

=
(
A0(rʹ)A0(rʹ + D)ei(φ(rʹ)− φ(rʹ+D))∗ F

− 1{ASB(k)}(rʹ)
)
(r)

(31) 

then enables direct interpretation and the phase simply becomes 

φOAEH(r) = φ(r) − φ(r+D), (32) 

where φOAEH(r) is the phase of the sample exit wave function measured 
experimentally using OAEH. Eq. (27) can be then written in the more 
general form 

VOAEH
p (r) = Vp(r) − Vp(r+D). (33) 

It should be noted that, for a neutral sample in which the electrostatic 
potential and electric field are contained, when the distance D is large 
enough Vp(r + D) = 0, VOAEH

p (r) reduces to Vp(r) in Eq. (33) and OAEH 
yields the same result as 4D-STEM.

4.3. Comparison of measured projected electric field with the theoretical 
model

The projected electric fields measured using the two experimental 
techniques were also compared with results obtained using the theo
retical model. As the projected electrostatic potential and electric field 

ψSB(r) = F
− 1{

F
− 1{I(r)}(k − q)⋅ASB(k)

}
(r)

=
(
F

− 1{
F

− 1{ψO
D(r)ψR

D(r)
}
(k)
}
(rʹ) ∗ F

− 1{ASB(k)}(rʹ)
)
(r)

=
(
ψO

D( − rʹ)ψR
D( − rʹ) ∗ F

− 1{ASB(k)}(rʹ)
)
(r)

=
( (

ψ0(r) ∗ F
− 1{A(k)e− iχ(k)}(r)

)
(rʹ)⋅

(
ψ0(r + D) ∗ F

− 1{A(k)e− iχ(k)}(r)
)
(rʹ) ∗ F

− 1{ASB(k)}(ŕ )
)
(r),

(30) 
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are related by Eq. (12), for OAEH and the theoretical model the com
ponents of the projected electric field Ep(r) are obtained by calculating 
the gradients (derivatives) of the projected electrostatic potential. The 
application of a gradient operator to Eq. (33) results in the expression 

EOAEH
p (r) = Ep(r) − Ep(r+D), (34) 

where EOAEH
p (r) is the projected electric field measured using OAEH with 

the PRW included. For 4D-STEM via DPC, EDPC
p (r) is measured directly, 

as explained in Section 3.2.
Fig. 6 shows the projected electric field EDPC

p (r) measured using 4D- 
STEM via DPC, alongside EOAEH

p (r) and ETh
p (r) determined from OAEH 

and the theoretical model, respectively. All of the figures are displayed 
with the same intensity range to provide a direct comparison. The pro
jected electric field computed from the theoretical model shown in Fig. 6
(c) is in excellent agreement with that measured using 4D-STEM via DPC 
shown in Fig. 6(a). Consideration of the PRW effect in the theoretical 
model shown in Fig. 6(d) reproduces the projected electric field EOAEH

p (r)
measured using OAEH shown in Fig. 6(b). The projected electric field 
calculated from the charge density distribution in the needles deter
mined using the MBIR approach, in which the PRW effect is already 
considered, is shown in Fig. 6(e).

In order to compare the projected electric field measured by the 
different methods in more detail, line profiles of Ex(r) and Ey(r) were 
generated along the vertical (solid) and horizontal (dashed) lines 
marked in Fig. 6. The values were averaged over a width of 30 nm along 
each line to improve the SNR. Figs. 7(a) and (c) show small differences in 
Ex(r) measured using OAEH and 4D-STEM via DPC along the vertical 
and horizontal lines. Slight deviations from zero in Ex(r), in particular 
for the experimental measurements, result from slight differences in the 
shapes and sizes of the needles, their slight tilt with respect to the y axis 
and their slight misalignment in the x direction.

In contrast, for Ey(r) the 4D-STEM line profiles are larger by ~90 V 
than those from OAEH in both the vertical and the horizontal direction, 
similarly to the line profiles of Ep(r) shown in Fig. 3(f). The smaller 
magnitude of EOAEH

p (r) originates primarily from the smaller y compo
nent EOAEH

y (r) for OAEH. The theoretical model reproduces the compo
nents EDPC

x (r) and EDPC
y (r) from 4D-STEM closely for both the vertical and 

the horizontal lines. The theoretical model that includes the PRW effect 
also reproduces the EOAEH

x (r) and EOAEH
y (r) components from OAEH, 

confirming that the inclusion of the PRW in the theoretical model is able 
to account for the differences.

The large reduction in EOAEH
y (r) for OAEH, when compared to EDPC

y (r)
measured using 4D-STEM, originates from the fact that the projected 

Fig. 6. (a, b) Projected electric field around the electrically-biased needles (marked in grey) recorded using (a) 4D-STEM via DPC and (b) OAEH. (c-e) Projected 
electric field calculated using the theoretical model (c) without and (d) with the PRW effect included and (e) using MBIR. These figures are derivatives of the 
projected electrostatic potentials shown in Figs. 4(d-f). The field contours are depicted by lines and arrows.

Fig. 5. ADF-STEM image of the Au needles showing the locations of the object 
and reference waves in OAEH. The object wave passes through the needles (the 
region between the yellow dashed lines), while the reference wave passes 
through vacuum (the region between the blue dashed lines). In the experiment, 
the FOV for OAEH and 4D-STEM via DPC is the region marked by a red dashed 
rectangle at the tips of the needles. The interference distance D is proportional 
to the biprism voltage. The interference overlap width W and the distance 
between the object and reference wave S are indicated. The distance S origi
nates from the electron biprism shadow back-projected to the object plane.
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electric field is oriented primarily parallel to the needles in the reference 
wave on both sides of the FOV (see Fig. 6(a)). Considering the slow 
decay of the projected electric field as a function of distance from the 
needle, the magnitude of Ey(r) is significant even several μm from the 
needles, resulting in a decrease in EOAEH

y (r) according to Eq. (34). In 
contrast, the magnitude of Ex(r) is small in the reference wave and 
EOAEH

x (r) is measured almost correctly. Subtraction of the slowly- 
decaying projected electric field in the reference wave from the sym
metrical projected electric field in the object wave results in the slight 
asymmetry in the electric field observed in Fig. 6(b).

4.4. Comparison between cumulative charge and line charge density 
measurements

The cumulative charge along the Au needle was measured from the 
phase image recorded using OAEH, in order to calculate the line charge 
density and to compare it with the fitting parameter K obtained from the 
theoretical model based on Section 3.3 and Eq. (33). The total charge Q 
enclosed within an integration contour C can be obtained by contour 
line integration of the gradient of the projected electrostatic potential 
according to the expression 

Q = ϵ0

∮

C

Ep(r(s))⋅n(r(s))ds = − ϵ0

∮

C

∇Vp(r(s))⋅n(r(s))ds, (35) 

where ϵ0 is the permittivity of free space, ∇ is a two-dimensional 
gradient operator, r = (x, y) is a two-dimensional vector in the spec

imen plane and n is an outward normal vector to a line parameter s 
around the integration contour C [51,52]. This approach was used to 
determine the cumulative charge profile along the lower needle by 
enlarging the size of the blue contour shown in Fig. 4(b) in the direction 
denoted by the arrow. The line charge density K in the needle could then 
be calculated from the slope of the cumulative charge profile inside the 
needle, which was in turn determined from a best fitting line to the 
measured profile (Fig. 4(c)). The upper needle should ideally yield the 
same linear charge density, but with opposite sign. In practice, the linear 
charge densities in the upper and lower needles are slightly different due 
to their different shapes and sizes. The average of the line charge den
sities is K = 3.31 e/nm, which is similar to the value of K = 3.63 e/nm 
obtained in Section 4.2.

The MBIR approach can also be used to determine the line charge 
density. The best-fitting solution for the projected charge density 

σMBIR
p (x, y) =

∫∞

− ∞

ρ(x, y, z)dz (which should not be confused with the 

interaction constant, σ = 2πmeλ/h2 introduced in Section 3.1) was ob
tained by using the approach described in Section 3.4. The total charge 
Q could be retrieved from a two-dimensional integral of the projected 
charge density σp(x, y) over the region of interest, according to the 
expression [51,52] 

Q =

∫∞

− ∞

dz
∫∫

C

ρ(x, y, z)dxdy =

∫∫

C

σMBIR
p (x, y)dxdy. (36) 

Fig. 7. Line profiles of (a, c) Ex(r) and (b, d) Ey(r) along the solid and dashed lines marked in Fig. 6 recorded using OAEH and 4D-STEM via DPC. Results obtained 
using MBIR and the theoretical line charge model are also included. The line profiles for 4D-STEM via DPC, OAEH, the line charge model, the line charge model 
including the PRW and MBIR are obtained from the lines marked in Figs. 6(a), (b), (c), (d) and (e), respectively.
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The cumulative charge profile was then obtained from the projected 
charge density map along the lower needle in the region marked by a blue 
contour in Fig. 4(b). Fig. 4(c) shows that the cumulative charge profile 
calculated using the MBIR approach (green curve) exactly matches that 
calculated from the phase map using Eq. (35) (black curve), confirming 
that the line charge density K obtained in Section 4.2 is reliable.

As mentioned above, the PRW effect was considered when esti
mating Vp(r) using the theoretical model (Fig. 4(e)). In the MBIR 
approach, a fictitious charge density can be included in additional buffer 
pixels around the border of the FOV, as explained in Section 3.4. Fig. 4(f) 
shows VMBIR

p (r) calculated by using the forward model from the charge 
density, both from the needles inside the FOV and from the buffer region 
outside the FOV, which is almost the same as VOAEH

p (r) measured using 
OAEH in Fig. 4(b).

4.5. Effect of biprism voltage and orientation

In order to further explore the effect of the PRW on the OAEH 
measurements, the projected electrostatic potential VOAEH

p (r) and elec
tric field EOAEH

p (r) were measured around a single biased Au needle in the 
same manner as described above, but using different biprism voltages 
and orientations with respect to the needle. The biprism voltage was 
varied between 70 and 210 V in steps of 70 V for hologram acquisition. 
The interference distances D were measured to be 1.4, 2.8 and 4.2 μm for 
biprism voltages of 70, 140 and 210 V, respectively. For this experiment, 
only the lower Au needle was biased at +50 V, while the upper needle 
was moved to the end of the holder. Two different orientations of the 
biprism with respect to the needle were chosen, with the biprism parallel 
(‖) and perpendicular (⊥) to the needle, resulting in the reference wave 
region being placed on the side of the needle (as shown in Fig. 5) or in 
front of the tip of the needle, respectively.

Figs. 8(a–c) show EDPC
p (r) measured using 4D-STEM via DPC (Fig. 8(a)) 

and EOAEH
p (r) measured using OAEH with a biprism voltage of 140 V and 

with the biprism oriented parallel (Fig. 8(b)) and perpendicular (Fig. 8(c)) 
to the needle. The magnitude of the projected electric field measured 
using OAEH in Figs. 8(b) and (c) is reduced by the PRW effect, when 
compared with the 4D-STEM measurement shown in Fig. 8(a). For the 
non-symmetrical situation, with the biprism placed alongside the needle, 
the projected electric field lines measured using OAEH in Fig. 8(b) are 
distributed asymmetrically around the needle due to the PRW effect. 
When the biprism is placed perpendicular to and in front of the needle, the 
situation is symmetrical and the field lines are distributed symmetrically 
in Fig. 8(c), just as in the 4D-STEM via DPC result shown in Fig. 8(a).

The projected electric fields measured using OAEH with different 
biprism voltages and orientations with respect to the needle are analysed 
in more detail in the form of line profiles of EOAEH

x (r) and EOAEH
y (r) in 

Figs. 8(d–g) along both the vertical (solid) and the horizontal (dashed) 
lines marked in Fig. 8(a). All of the line profiles were averaged over a 
width of 30 nm to improve the SNR. The solid line profiles correspond to 
OAEH measurements with the biprism parallel (‖) to the needle, while the 
dashed line profiles correspond to those with the biprism perpendicular 
(⊥) to the needle. Line profiles of EDPC

x (r) and EDPC
y (r) measured using 4D- 

STEM via DPC in Fig. 8(a) are also included for reference (black curves).
The line profiles shown in Fig. 8 exhibit similar trends to those shown 

in Fig. 7, in terms of asymmetry and reduction in EOAEH
y (r). However, for 

the single needle EOAEH
x (r) is not close to zero along the horizontal line 

for both biprism orientations in Fig. 8(e). This observation indicates that 
the x component of Ep(r) is not negligible alongside the single needle, as 
shown in Fig. 8(a), in contrast to the two needles in Fig. 6. The presence 
of an x-component of Ep(r) next to the single needle in the reference 
wave also results in EOAEH

x (r) for the parallel biprism being ~10 V larger 
than Ex(r) in Figs. 8(d) and (e). The magnitude of the x component of 
Ep(r) in the reference wave for the parallel biprism orientation can be 
predicted from the line profile of the 4D-STEM measurement, which 
converges to 10 V on both sides of the needle in Fig. 8(e). In contrast, 
EOAEH

x (r) measured using OAEH with the perpendicular biprism 

Fig. 8. Projected electric field measured using OAEH around a single electrically-biased Au needle (marked in grey) for two biprism orientations (parallel and 
perpendicular to the needle) and different biprism voltages. (a) Projected electric field measured using 4D-STEM via DPC as a reference. (b, c) Projected electric field 
measured using OAEH with the biprism (b) parallel (‖) and (c) perpendicular (⊥) to the needle. The biprism voltage is 140 V. The field is depicted using lines and 
arrows. (d, e) Line profiles of Ex(r) and (f, g) line profiles of Ey(r) obtained along the vertical solid and horizontal dashed arrows in (a–c), respectively, for two biprism 
orientations and biprism voltages of 70, 140 and 210 V.
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orientation is close to EDPC
x (r) from 4D-STEM along the horizontal and 

vertical lines because the x component of Ep(r) is almost zero a few μm 
from the needle in the direction parallel to the needle (see Fig. 8(a)).

In general, EOAEH
y (r) increases with biprism voltage. For a biprism 

voltage of 210 V, EOAEH
y (r) is ~10 V higher than for a biprism voltage of 

70 V. As the interference distance D increases with biprism voltage, the 
reference wave region moves away from the needle, thereby reducing 
the magnitude of the long-range electric field Ep(r+D) and increasing 
EOAEH

y (r) according to Eq. (34). In contrast, EOAEH
x (r) does not change 

significantly, as the x component of Ep(r) does not change significantly 
with distance from the needle for both biprism orientations in the pre
sent experimental setup. Further details about the acquisition of electron 
holograms using different biprism voltages are described in Appendix A.

EOAEH
y (r) measured using OAEH is approximately 50 V smaller for 

both biprism orientations than EDPC
y (r) measured using 4D-STEM. The 

reduction in EOAEH
y (r) is analogous to the difference between the mea

surements for the two biased needles in Figs. 7(b) and (d). The slight 
asymmetry in the solid lines in Fig. 8(g) is responsible for the asymmetry 
in the projected electric field lines in Fig. 8(b) due to the PRW effect.

5. Discussion

Measurement of the same physical entity using two different ap
proaches increases confidence in the result and confirms the reliability 
of both techniques. The imaging of a neutral thin sample using electron 
holographic techniques and STEM, especially in DPC mode, yields reli
able and closely matching results. This consistency is expected, as both 
techniques measure the phase of the transmission function of the sam
ple. In the present work, the TEM mode of OAEH and 4D-STEM via DPC 
using the COM of CBED patterns have been used to measure the long- 
range electric fields of electrically-biased conducting needles. The 
measurements yield different results, which can be largely explained by 
perturbation of the reference wave in OAEH. This behaviour is explained 
using a theoretical treatment in Section 4.2. When the PRW is taken into 
account, the results match closely. In contrast to OAEH, 4D-STEM via 
DPC does not require the use of a reference wave to extract the electric 
field. Nevertheless, other important concerns remain. These concerns 
are discussed here for completeness and future reference.

The electric field of an electrically-biased conducting needle extends 
in-plane far enough to influence the reference electron wave in OAEH at 
a significant distance, suggesting that it also extends significantly in the 
direction of electron propagation. Consequently, treating the sample as 
thin becomes questionable for both OAEH and 4D-STEM via DPC. As 
OAEH is performed in conventional TEM mode using parallel illumi
nation, the transmission function T(r) = eiφ(r) of a thin sample cannot be 
applied to yield ψO(r) = 1⋅eiφ(r). Instead, the electron wave function can 
gain an amplitude modulation as well as a phase modulation. The 
relationship between the phase and the electrostatic potential φ(r) =

σ
∫

z
V(r, z)dz may also be affected [39]. Fortunately, the long-range 

electrostatic potential varies slowly outside the present samples and 
the projection approximation is still likely to hold [41].

The presence of an external electric field originating from a charge 
density distribution on the specimen holder and/ or the microscope 
column can also affect measurements of electric field. It is impossible to 
completely distinguish the electric field of the specimen from that 
originating from other objects in the microscope column. To a first 
approximation, OAEH is insensitive to external electric fields, since their 
contribution to the object wave is largely cancelled out by that in the 
reference wave, assuming that it is almost constant near the specimen. 
This point is explained further in Appendix C. In contrast, 4D-STEM via 
DPC is inherently sensitive to any external electric field present in the 
FOV. If the additional electric field is invariant over time and for 
different biasing setups in the vicinity of the FOV, then it can also be 

cancelled out by subtracting measurements recorded with 0 V applied to 
the needles from measurements recorded with a voltage applied to the 
needles for the case of 4D-STEM, as described in Section 2.

For 4D-STEM, care should be taken with electric field measurements 
due to drift of the transmitted disk over a long acquisition time, as well 
as when subtracting measurements recorded at different bias voltages at 
different times. Scan noise, dynamic specimen charging and specimen 
drift during the prolonged acquisition time are also inherent to STEM- 
based techniques. Furthermore, finite element and multislice simula
tions may be required for comparison with experimental results [53].

The PRW effect, which is the primary concern in the present paper, 
depends on the sample itself. An electrically-biased conducting sample 
produces a strong PRW effect, thereby causing a discrepancy in mea
surements recorded using OAEH. In contrast, for an electrically neutral 
sample that is not associated with an external electric field, measure
ments recorded using OAEH and 4D-STEM via DPC are likely to be 
almost identical, in the absence of artefacts such as those described in 
the previous paragraph or the influence of diffraction contrast in the 
sample. However, care is also required when examining dielectric (i.e., 
insulating) samples, which can form electric fields outside them that can 
perturb the reference wave in OAEH as a result of electron-beam- 
induced specimen charging. Such electron-beam-induced charging ef
fects can depend on the electrical properties of the material, the electron 
dose (rate) and the scan speed of the measurements.

6. Conclusions

Two different phase contrast techniques, OAEH and 4D-STEM via 
DPC, have been used to measure the projected electrostatic potential and 
electric field around electrically-biased conducting needles in the TEM. 
Results obtained using the two techniques were compared with each 
other and with a theoretical model based on line charges. Differences 
were observed in the magnitudes of the electric fields measured using 
OAEH and 4D-STEM via DPC. Comparisons with the theoretical model 
showed that 4D-STEM via DPC measurements provided more direct 
measurements of the electric field, whereas the OAEH results were 
affected by the long-range electric field outside the sample, which per
turbs the vacuum reference wave and leads to an underestimation of the 
electrostatic potential and electric field. This effect was studied sys
tematically for different biprism orientations and voltages. In contrast to 
regular electrically neutral (electric-field-space-confined) samples, the 
biased conducting needles exhibit extended electric fields, which reach 
the reference wave in OAEH. Inclusion of the electric field of the needle 
in a theoretical description of OAEH confirmed the observations. The 
charge density distributions in the needles were also determined from 
the measured projected potentials using MBIR and shown to match a 
simple theoretical model. In future studies, it may be possible to elimi
nate the PRW effect experimentally, for example by using a special 
electron optical setup [54–56]. However, in general, care should be 
taken when measuring long-range electric fields using a standard setup 
for OAEH. When considered in detail, both techniques provide results 
that are well understood and agree with each other. The present study 
highlights the benefit of comparing results obtained using complemen
tary techniques, both with each other and with theoretical predictions.
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Appendix A

Perturbed reference wave effect on long-range electric field measurement in off-axis electron holography

When measuring a long-range projected electrostatic potential or electric field using OAEH, the PRW effect can be reduced by using a higher 
biprism voltage, as shown in Fig. 8. However, this approach comes at the cost of decreasing the holographic fringe contrast and the SNR in the 
reconstructed phase. Fig. A.1 shows the SNR and root-mean-square (RMS) noise of Vp(r) and Ep(r), respectively, measured using both 4D-STEM via 
DPC and OAEH for different biprism voltages and orientations. The SNR and RMS noise were measured in 150 nm × 150 nm areas of seven different 
regions around the single needle. The RMS noise was calculated after subtracting two-dimensional second-order polynomial fits from Vp(r) and Ep(r)
in each small region. Averaged values and standard deviations of the SNR and RMS noise are displayed in Fig. A.1. The SNR is always higher (and the 
RMS noise always lower) for the parallel than the perpendicular biprism orientation, since a parallel biprism corresponds to the most stable orientation 
in our microscope setup. The RMS noise increases (and the SNR decreases) with increasing biprism voltage because the holographic fringe contrast 
decreases due to the larger overlap width of the electron beam compared to its lateral coherence. The increase in RMS noise with increasing biprism 
voltage results in noise in the line profiles for a biprism voltage of 210 V in Fig. 8, illustrating the fact that a very high biprism voltage cannot be used to 
fully mitigate the PRW effect. Conversely, at a biprism voltage of 70 V Fresnel fringes originating from the edges of the biprism are present in the FOV 
and increase the RMS noise for both biprism orientations. The RMS noise in the 4D-STEM measurements is close to that measured for OAEH with a 
parallel biprism and biprism voltages of 140 and 210 V. Although the SNR of the 4D-STEM measurements appears to be higher than for OAEH, this 
difference results primarily from the lower magnitudes of VOAEH

p (r) and EOAEH
p (r) originating from the PRW effect in OAEH.

Appendix B

Electrostatic potential and electric field of a needle-shaped sample based on a line charge model

A theoretical model based on line charges was used extensively in the present work to quantitatively evaluate the OAEH and 4D-STEM mea
surements, since it provides suitable solutions for conducting needle-shaped specimens that have ellipsoidal surfaces. In practice, the outer surfaces of 
the upper and lower needles shown in the inset to Fig. 4(c) do not have exactly ellipsoidal equipotential surfaces after electrochemical etching. In order 
to approximate Vp(r) and Ep(r) for a needle that does not have an exactly ellipsoidal surface, an effective length and line charge density of the line 
segments should be introduced into the theoretical model. Figs. B.1 and B.2 show line profiles of ETh

p (r) simulated using a theoretical model that 
comprises two charged line segments of different length a and line charge density K. The solid and dashed line profiles represent the distribution of 
electric field around the needles without and with the PRW effect, respectively. By extending a outwards from the FOV and varying K, the magnitude 
and local distribution of ETh

p (r) (solid line) are changed around the tips of the line segments. The parameters a and K can be adjusted to achieve best fits 
of Eq. (22b) to measurements of Vp(r). The fitting parameters a and K obtained from the best-fitting model in Fig. 4 can be regarded as effective values 
of a and K. The effective values of K and in particular a do not have to be identical to the actual length and line charge density of the needle. Fig. B.3(a) 
shows V(x, y,0) obtained from Eq. (22a) for input parameters of a = 1 mm and K = 3.31 e/nm, which are the actual length and line charge density 
of the needle, respectively. Figs. B.3(b) and (c) show line profiles of Ey(r), the y-component of Ep(r), along the horizontal and vertical arrows in the 
middle of the needles, in the same manner as in Figs. 6 and 7. The use of the actual values of a and K (green curve) overestimates Ep(r) around the 
needles, when compared with EDPC

p (r) measured experimentally using 4D-STEM (blue curve). A better fit can be obtained by decreasing a to an effective 
value of a, which allows for considering the smaller magnitude of the electric field created by the true needle shape far from the FOV. However, the use 
of too many effective parameters in the theoretical model does not always provide better results. Figs. B.3(d–f) show V(x, y,0) simulated using the 
theoretical model and corresponding line plots of Ey(r), the y-component of Ep(r), along the horizontal and vertical arrows in the middle of the needles, 
respectively. The x and y coordinates of both line segments and the values of a and K were used as fitting parameters to take into account the horizontal 
misalignment and non-ideal ellipsoidal shape of the needles. Fits over the whole area outside the needles using these four parameters result in a 
slightly better fit than that with only two parameters a and K in Fig. 4. However, the local distribution of ETh

p (r) close to the tips of the needles is 
significantly different from the measurements obtained using 4D-STEM and OAEH, as shown in Figs. B.3(e) and (f). In this case, the large displacement 
of the line segments in the x and y directions does not physically make sense.

Although the present theoretical model is mathematically elegant, it may be too simple to represent all of the details in real experiments, such as a 
non-ellipsoidal needle surface. The model can be improved by introducing multiple line charges to model an arbitrary needle shape [57]. A variable 
line charge density along the needle may also be required [58]. In addition, care may be needed to select appropriate free parameters and corre
sponding fitting values. Nevertheless, it is still valuable to use such a simple model to predict Vp(r) and Ep(r) around symmetrical well-aligned 
needle-shaped specimens, when compared to running time-consuming numerical simulations. Furthermore, the inclusion of the PRW effect into 
the simulated potential reproduces the reduced magnitude of the projected potential measured using OAEH.
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Appendix C

Long-range electrostatic potential and field measurement using OAEH and 4D-STEM

Another aspect of the difference between OAEH and 4D-STEM can be seen in Fig. B.1. After including the PRW effect (dashed curve), ETh
y (r) is 

insensitive to a except when a is small (comparable to the size of the FOV), whereas without including the PRW effect (solid curve) ETh
y (r) increases 

logarithmically with a around the charged line segments. This behaviour highlights the fact that OAEH is sensitive primarily to the local electric field 
near the FOV when including the PRW effect, whereas 4D-STEM is sensitive to the entire electric field resulting from charges far from the FOV, e.g., on 
the specimen holder and microscope column, as well as to long-range magnetic fields in the microscope. Charge distributions far from the FOV 
contribute to an almost linear Vp(r) and almost constant Ey(r) in the vicinity of the FOV [57], which are almost removed by the reference wave in 
OAEH. In contrast, variations in electric field close to the needle tip are different in the object and reference waves and are not cancelled out readily in 
the same way, allowing OAEH to detect local information in the vicinity of the FOV. Electrostatic equipotential lines around the tips of the needles are 
similar to the inset to Fig. 4(c), with a ranging from 10–5 to 10–2 m, resulting in invariance of the OAEH measurements in Fig. B.1. In contrast, the inset 
to Fig. B.1(c) shows that the smallest value of a, 10–6 m, changes the distribution and magnitude of the local electric field in the FOV due to the small 
size of a when compared to the FOV, resulting in the discrepancy in the line profiles (dashed red curves) in Figs. B.1(b) and (d).

Fig. A.1. SNR and RMS noise of the projected electrostatic potential and electric field measured using 4D-STEM via DPC and OAEH for different biprism voltages and 
orientations. (a) SNR of the projected electrostatic potential. (b) SNR of the projected electric field. (c) RMS noise of the projected electrostatic potential. (d) RMS 
noise of the projected electric field. The error bars indicate the standard deviations of the measurements.
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Fig. B.1. Line profiles of ETh
x (r) and ETh

y (r) computed using the theoretical model for different lengths of the line charges a. Line profiles of (a, c) ETh
x (r) and (b, d) 

ETh
y (r) are shown along the vertical and horizontal lines marked in Fig. 6, respectively. The solid and dashed line profiles correspond to the projected electric field 

calculated using Eq. (22b) and Eq. (12) without and with including the PRW effect, respectively. The inset in (c) shows electrostatic equipotential lines around the 
line charges in the specimen plane (z = 0) for a = 1 μm. The line charge density K is fixed to 3.31 e/nm.

Fig. B.2. Line profiles of ETh
x (r) and ETh

y (r) computed using the theoretical model for different line charge densities K. Line profiles of (a, c) ETh
x (r) and (b, d) ETh

y (r) are 
shown along the vertical and horizontal lines marked in Fig. 6, respectively. The solid and dashed line profiles correspond to the projected electric field calculated 
using Eq. (22b) and Eq. (12) without and with including the PRW effect, respectively. The length of the line charge a is fixed to 1 mm.
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Fig. B.3. Line profiles of ETh
y (r) for different parameters of the theoretical model. (a) Electrostatic equipotential lines around the charged line segments in the 

specimen plane (z = 0) for a = 1 mm and K = 3.31 e/nm. (b, c) Ey(r) recorded along (b) the vertical and (c) the horizontal lines marked in Fig. 6, respectively. 
(d–f) The same datasets with the positions of the needles included as additional parameters for fitting of the theoretical model to the experimental data. The fitting 
parameters are a = 998 μm and K = 2.76 e/nm. The blue-dashed lines in (a) and (d) mark the outer surfaces of the needles. The line profiles for OAEH, 4D-STEM 
via DPC, and MBIR are the same as those in Figs. 6 and 7.

Data availability

Data will be made available on request.
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[25] I. Lazić, E.G.T. Bosch, Analytical review of direct stem imaging techniques for thin 
samples, Adv. Imag. Elect. Phys. 199 (2017) 75–184, https://doi.org/10.1016/bs. 
aiep.2017.01.006.

[26] P.W. Hawkes, J.C. Spence, Springer Handbook of Microscopy, Springer, Cham, 
2019.

[27] P.D. Nellist, B.C. McCallum, J.M. Rodenburg, Resolution beyond the information 
limit in transmission electron-microscopy, Nature 374 (1995) 630–632, https:// 
doi.org/10.1038/374630a0.

[28] A.M. Maiden, J.M. Rodenburg, An improved ptychographical phase retrieval 
algorithm for diffractive imaging, Ultramicroscopy 109 (2009) 1256–1262, 
https://doi.org/10.1016/j.ultramic.2009.05.012.

[29] M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden, J.M. Rodenburg, Ptychographic 
electron microscopy using high-angle dark-field scattering for sub-nanometre 
resolution imaging, Nat. Commun. 3 (2012) 730, https://doi.org/10.1038/ 
ncomms1733.

J. Jo et al.                                                                                                                                                                                                                                        Ultramicroscopy 277 (2025) 114218 

17 

https://doi.org/10.1063/1.118978
https://doi.org/10.1016/S0009-2614(01)00822-3
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0003
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0003
https://doi.org/10.1146/annurev-matsci-070511-155007
https://doi.org/10.1046/j.1365-2818.2000.00753.x
https://doi.org/10.1046/j.1365-2818.2000.00753.x
https://doi.org/10.1103/PhysRevLett.88.238302
https://doi.org/10.1088/0953-8984/16/2/021
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0008
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0008
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0009
https://doi.org/10.1146/annurev.matsci.37.052506.084219
https://doi.org/10.1146/annurev.matsci.37.052506.084219
https://doi.org/10.1088/0034-4885/71/1/016102
https://doi.org/10.1016/j.ultramic.2009.11.022
https://doi.org/10.1016/j.ultramic.2009.11.022
https://doi.org/10.1016/j.ultramic.2009.12.007
https://doi.org/10.1103/PhysRevA.92.033844
https://doi.org/10.1088/0022-3727/49/19/194002
https://doi.org/10.1016/j.ultramic.2016.03.007
https://doi.org/10.1016/j.ultramic.2016.03.007
https://doi.org/10.1093/micmic/ozad104
https://doi.org/10.1016/j.ultramic.2015.02.004
https://doi.org/10.1016/j.ultramic.2015.02.004
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0019
https://doi.org/10.1016/S0304-3991(76)91538-2
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0021
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0021
https://doi.org/10.1038/NPHYS2337
https://doi.org/10.1038/ncomms6653
https://doi.org/10.1016/j.ultramic.2015.10.011
https://doi.org/10.1016/j.ultramic.2015.10.011
https://doi.org/10.1016/bs.aiep.2017.01.006
https://doi.org/10.1016/bs.aiep.2017.01.006
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0026
http://refhub.elsevier.com/S0304-3991(25)00116-0/sbref0026
https://doi.org/10.1038/374630a0
https://doi.org/10.1038/374630a0
https://doi.org/10.1016/j.ultramic.2009.05.012
https://doi.org/10.1038/ncomms1733
https://doi.org/10.1038/ncomms1733


[30] Y. Jiang, Z. Chen, Y.M. Hang, P. Deb, H. Gao, S.E. Xie, P. Purohit, M.W. Tate, 
J. Park, S.M. Gruner, V. Elser, D.A. Muller, Electron ptychography of 2D materials 
to deep sub-angstrom resolution, Nature 559 (2018) 343–349, https://doi.org/ 
10.1038/s41586-018-0298-5.

[31] H. Ryll, M. Simson, R. Hartmann, P. Holl, M. Huth, S. Ihle, Y. Kondo, P. Kotula, 
A. Liebel, K. Muller-Caspary, A. Rosenauer, R. Sagawa, J. Schmidt, H. Soltau, 
L. Struder, A pnCCD-based, fast direct single electron imaging camera for TEM and 
STEM, J. Instrum. 11 (2016) P04006, https://doi.org/10.1088/1748-0221/11/04/ 
P04006.

[32] M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, 
P. Deb, E. Turgut, J.T. Heron, D.G. Schlom, D.C. Ralph, G.D. Fuchs, K.S. Shanks, H. 
T. Philipp, D.A. Muller, S.M. Gruner, High dynamic range pixel array detector for 
scanning transmission electron microscopy, Microsc. Microanal. 22 (2016) 
237–249, https://doi.org/10.1017/S1431927615015664.

[33] E. Yücelen, I. Lazić, E.G.T. Bosch, Phase contrast scanning transmission electron 
microscopy imaging of light and heavy atoms at the limit of contrast and 
resolution, Sci. Rep. 8 (2018) 2676, https://doi.org/10.1038/s41598-018-20377- 
2.

[34] T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, L. Jones, P.D. Nellist, Efficient 
phase contrast imaging in STEM using a pixelated detector. Part 1: experimental 
demonstration at atomic resolution, Ultramicroscopy 151 (2015) 160–167, 
https://doi.org/10.1016/j.ultramic.2014.09.013.

[35] H. Yang, T.J. Pennycook, P.D. Nellist, Efficient phase contrast imaging in STEM 
using a pixelated detector. Part II: optimisation of imaging conditions, 
Ultramicroscopy 151 (2015) 232–239, https://doi.org/10.1016/j. 
ultramic.2014.10.013.
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